Suppr超能文献

从社交媒体挖掘偶然药物使用的机器学习应用:Serendipity

Serendipity-A Machine-Learning Application for Mining Serendipitous Drug Usage From Social Media.

出版信息

IEEE Trans Nanobioscience. 2019 Jul;18(3):324-334. doi: 10.1109/TNB.2019.2909094. Epub 2019 Apr 4.

Abstract

Serendipitous drug usage refers to the unexpected relief of comorbid diseases or symptoms when taking medication for a different known indication. Historically, serendipity has contributed significantly to identifying many new drug indications. If patient-reported serendipitous drug usage in social media could be computationally identified, it could help generate and validate drug-repositioning hypotheses. We investigated deep neural network models for mining serendipitous drug usage from social media. We used the word2vec algorithm to construct word-embedding features from drug reviews posted in a WebMD patient forum. We adapted and redesigned the convolutional neural network, long short-term memory network, and convolutional long short-term memory network by adding contextual information extracted from drug-review posts, information-filtering tools, medical ontology, and medical knowledge. We trained, tuned, and evaluated our models with a gold-standard dataset of 15714 sentences (447 [2.8%] describing serendipitous drug usage). Additionally, we compared our deep neural networks to support vector machine, random forest, and AdaBoost.M1 algorithms. Context information helped to reduce the false-positive rate of deep neural network models. If we used an extremely imbalanced dataset with limited instances of serendipitous drug usage, deep neural network models did not outperform other machine-learning models with n-gram and context features. However, deep neural network models could more effectively use word embedding in feature construction, an advantage that makes them worthy of further investigation. Finally, we implemented natural-language processing and machine-learning methods in a web-based application to help scientists and software developers mine social media for serendipitous drug usage.

摘要

偶然药物使用是指在使用药物治疗已知的其他适应症时,意外缓解了共病或症状。历史上,偶然发现对确定许多新的药物适应症有很大的贡献。如果可以通过计算从社交媒体中识别出患者报告的偶然药物使用情况,那么这可能有助于生成和验证药物重新定位假说。我们研究了用于从社交媒体中挖掘偶然药物使用情况的深度神经网络模型。我们使用 word2vec 算法从 WebMD 患者论坛中发布的药物评论中构建词嵌入特征。我们通过添加从药物评论帖子中提取的上下文信息、信息过滤工具、医学本体和医学知识,对卷积神经网络、长短期记忆网络和卷积长短期记忆网络进行了改编和重新设计。我们使用包含 15714 条句子的黄金标准数据集(447 [2.8%]条描述偶然药物使用情况)对我们的模型进行了训练、调整和评估。此外,我们还将我们的深度神经网络与支持向量机、随机森林和 AdaBoost.M1 算法进行了比较。上下文信息有助于降低深度神经网络模型的假阳性率。如果我们使用的是具有有限偶然药物使用实例的严重不平衡数据集,那么深度神经网络模型并不优于具有 n 元组和上下文特征的其他机器学习模型。但是,深度神经网络模型可以更有效地在特征构建中使用词嵌入,这一优势使其值得进一步研究。最后,我们在一个基于 Web 的应用程序中实现了自然语言处理和机器学习方法,以帮助科学家和软件开发人员从社交媒体中挖掘偶然药物使用情况。

相似文献

1
Serendipity-A Machine-Learning Application for Mining Serendipitous Drug Usage From Social Media.
IEEE Trans Nanobioscience. 2019 Jul;18(3):324-334. doi: 10.1109/TNB.2019.2909094. Epub 2019 Apr 4.
2
Medical concept normalization in social media posts with recurrent neural networks.
J Biomed Inform. 2018 Aug;84:93-102. doi: 10.1016/j.jbi.2018.06.006. Epub 2018 Jun 12.
3
Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks.
PLoS One. 2021 Oct 15;16(10):e0258623. doi: 10.1371/journal.pone.0258623. eCollection 2021.
4
Identifying health related occupations of Twitter users through word embedding and deep neural networks.
BMC Bioinformatics. 2022 Sep 28;22(Suppl 10):630. doi: 10.1186/s12859-022-04933-2.
6
A new word embedding model integrated with medical knowledge for deep learning-based sentiment classification.
Artif Intell Med. 2024 Feb;148:102758. doi: 10.1016/j.artmed.2023.102758. Epub 2024 Jan 8.
8
Evaluating shallow and deep learning strategies for the 2018 n2c2 shared task on clinical text classification.
J Am Med Inform Assoc. 2019 Nov 1;26(11):1247-1254. doi: 10.1093/jamia/ocz149.
9
Comparative analysis on Facebook post interaction using DNN, ELM and LSTM.
PLoS One. 2019 Nov 12;14(11):e0224452. doi: 10.1371/journal.pone.0224452. eCollection 2019.

引用本文的文献

1
Improving topic modeling performance on social media through semantic relationships within biomedical terminology.
PLoS One. 2025 Feb 21;20(2):e0318702. doi: 10.1371/journal.pone.0318702. eCollection 2025.
2
Predicting patients' sentiments about medications using artificial intelligence techniques.
Sci Rep. 2024 Dec 30;14(1):31928. doi: 10.1038/s41598-024-83222-9.
3
Social Media Posts on Statins: What Can We Learn About Patient Experiences and Perspectives?
J Am Heart Assoc. 2024 Apr 2;13(7):e033992. doi: 10.1161/JAHA.124.033992. Epub 2024 Mar 27.
4
The Generation of Piano Music Using Deep Learning Aided by Robotic Technology.
Comput Intell Neurosci. 2022 Oct 10;2022:8336616. doi: 10.1155/2022/8336616. eCollection 2022.

本文引用的文献

1
A systematic study of the class imbalance problem in convolutional neural networks.
Neural Netw. 2018 Oct;106:249-259. doi: 10.1016/j.neunet.2018.07.011. Epub 2018 Jul 29.
2
MfeCNN: Mixture Feature Embedding Convolutional Neural Network for Data Mapping.
IEEE Trans Nanobioscience. 2018 Jul;17(3):165-171. doi: 10.1109/TNB.2018.2841053. Epub 2018 May 28.
3
Rationale-Augmented Convolutional Neural Networks for Text Classification.
Proc Conf Empir Methods Nat Lang Process. 2016 Nov;2016:795-804. doi: 10.18653/v1/d16-1076.
4
Leveraging graph topology and semantic context for pharmacovigilance through twitter-streams.
BMC Bioinformatics. 2016 Oct 6;17(Suppl 13):335. doi: 10.1186/s12859-016-1220-5.
5
Social Media Listening for Routine Post-Marketing Safety Surveillance.
Drug Saf. 2016 May;39(5):443-54. doi: 10.1007/s40264-015-0385-6.
9
Validating drug repurposing signals using electronic health records: a case study of metformin associated with reduced cancer mortality.
J Am Med Inform Assoc. 2015 Jan;22(1):179-91. doi: 10.1136/amiajnl-2014-002649. Epub 2014 Jul 22.
10
Use of genome-wide association studies for drug repositioning.
Nat Biotechnol. 2012 Apr 10;30(4):317-20. doi: 10.1038/nbt.2151.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验