Suppr超能文献

基于多个李雅普诺夫函数的切换非线性非下三角系统自适应神经网络跟踪控制

Multiple Lyapunov Functions for Adaptive Neural Tracking Control of Switched Nonlinear Nonlower-Triangular Systems.

出版信息

IEEE Trans Cybern. 2020 May;50(5):1877-1886. doi: 10.1109/TCYB.2019.2906372. Epub 2019 Apr 3.

Abstract

In this paper, the problem of adaptive neural tracking control for a type of uncertain switched nonlinear nonlower-triangular system is considered. The innovations of this paper are summarized as follows: 1) input to state stability of unmodeled dynamics is removed, which is an indispensable assumption for the design of nonswitched unmodeled dynamic systems; 2) the design difficulties caused by the nonlower-triangular structure is handled by applying the universal approximation ability of radial basis function neural networks and the inherent properties of Gaussian functions, which avoids the restriction that the monotonously increasing bounding functions of the nonlower-triangular system functions must exist; and 3) multiple Lyapunov functions are utilized to develop a backstepping-like recursive design procedure such that the solvability of the adaptive neural tracking control issue of all subsystems is unnecessary. Based on the proposed controller design methods, it can be obtained that all signals in the closed-loop switched system remain bounded and the tracking error can eventually converge to a small neighborhood of the origin. In the simulation study, two examples are supplied to prove the practicability and feasibility of the developed design schemes.

摘要

本文针对一类不确定切换非线性非下三角系统的自适应神经网络跟踪控制问题进行了研究。本文的创新点总结如下:1)去除了未建模动态的输入状态稳定性,这是设计非切换未建模动态系统所必需的假设;2)通过应用径向基函数神经网络的通用逼近能力和高斯函数的固有特性,处理了非下三角结构带来的设计困难,避免了非下三角系统函数单调递增边界函数必须存在的限制;3)利用多个李雅普诺夫函数开发了一种类似于反推的递推设计过程,使得所有子系统的自适应神经网络跟踪控制问题的可解性变得不必要。基于所提出的控制器设计方法,可以得出闭环切换系统中的所有信号都是有界的,跟踪误差最终可以收敛到原点的一个小邻域内。在仿真研究中,提供了两个实例来证明所开发的设计方案的实用性和可行性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验