Suppr超能文献

测定富硫气体和液体中超低挥发性汞的浓度。

Determination of ultra-low volatile mercury concentrations in sulfur-rich gases and liquids.

作者信息

Brombach Christoph-Cornelius, Pichler Thomas

机构信息

Universität Bremen, Fachbereich Geowissenschaften, Geochemistry and Hydrogeology, Klagenfurterstr, 2-4, 28359 Bremen, Germany.

Universität Bremen, Fachbereich Geowissenschaften, Geochemistry and Hydrogeology, Klagenfurterstr, 2-4, 28359 Bremen, Germany.

出版信息

Talanta. 2019 Jul 1;199:277-284. doi: 10.1016/j.talanta.2019.02.070. Epub 2019 Feb 20.

Abstract

Determining mercury (Hg) concentrations in a wide range of naturally occurring liquids (i.e., groundwater, hydrothermal fluids, acid mine drainage, submarine groundwater discharge, etc.) and gases, (i.e., volcanic and hydrothermal emissions, flue gas, natural gas, land fill gas, etc.) has obstacles due to the presence of HS in many of such samples. The classical approach of trapping Hg on gold traps comes up against its limits due to "poisoning" of the traps by HS and problems for its determination by cold vapor atomic fluorescence spectrometry (CV-AFS). Due to low concentrations of Hg in these sample types it is often necessary to collect large amounts of liquid or gas in excess of 20 L, which makes transport to the laboratory difficult. With this in mind we developed a portable method for the collection of Hg from gases and liquids rich in HS. The method uses an impinger set-up with an alkaline trap followed by two potassium permanganate - sulfuric acid traps. The potassium permanganate (KMnO) oxidizes elemental Hg vapor to Hg, which remains in the KMnO solution and thus can be analyzed by CV-AFS. Thus, rather than 25 L of sample, only a few mL have to be transported to the laboratory. A possible caveat of this approach is that naturally occurring gases are generally a mixture of several different gases, such as H, CH, SO and HS, which can react with and thus consume KMnO. The influence of various gas compounds at different concentrations were tested for their effect on the trapping of Hg by KMnO. Hydrogen and CH did not cause any interference, while SO did react with the KMnO. When the oxidizing capacity in the first KMnO-trap was depleted due to SO, Hg was trapped in the second KMnO-trap, which acted as a safety trap. Good recoveries of 99.5 % were achieved for the Hg collected in both KMnO-traps. Nevertheless, when HS was introduced into the system, Hg recovery dropped by almost 50 %. This observation was attributed to the formation of mercury sulfide (HgS) in the trap when the oxidation capacity of the KMnO-trap was consumed. HgS cannot be reduced by stannous chloride (SnCl), which is necessary for detection by CV-AFS. The problem was overcome by adding an alkaline trap with the reductant sodium borohydride (NaBH) in front of the two KMnO-traps. In this trap HS was converted to S, which does not reach the KMnO-trap while at the same time NaBH prevented the oxidation of Hg to Hg followed by precipitation as HgS. Good recoveries of 98.05 ± 3.6 % (n = 3) were obtained for Hg when a volume of 1000 mL HS was passed through the impinger train. Field testing of the method verified the effect of HS on the trapping and ultimately the determination of Hg in the hydrothermal gas. With the alkaline trap we determined a Hg concentration of 358 ng m Hg, while without the alkaline trap only 101 ng m Hg. Thus, the set-up without the alkaline trap led to an underestimation of the real Hg concentration by 71.8 % and confirmed the necessity of an alkaline trap to overcome the interference of HS.

摘要

由于许多此类样品中存在硫化氢(HS),测定多种天然存在的液体(即地下水、热液、酸性矿山排水、海底地下水排放等)和气体(即火山和热液排放物、烟道气、天然气、垃圾填埋气等)中的汞(Hg)浓度存在障碍。由于硫化氢会使金捕集阱“中毒”,且采用冷蒸气原子荧光光谱法(CV-AFS)测定时存在问题,因此在金捕集阱上捕集汞的经典方法存在局限性。由于这些样品类型中的汞浓度较低,通常需要收集超过20升的大量液体或气体,这使得运输到实验室变得困难。考虑到这一点,我们开发了一种从富含硫化氢的气体和液体中收集汞的便携式方法。该方法使用一个带有碱性捕集阱的冲击器装置,随后是两个高锰酸钾 - 硫酸捕集阱。高锰酸钾(KMnO₄)将元素汞蒸气氧化为Hg²⁺,其保留在KMnO₄溶液中,因此可以通过CV-AFS进行分析。因此,只需将几毫升样品而不是25升样品运输到实验室。这种方法可能存在的一个问题是,天然存在的气体通常是几种不同气体的混合物,如H₂、CH₄、SO₂和HS,它们可以与KMnO₄反应并因此消耗KMnO₄。测试了不同浓度的各种气体化合物对KMnO₄捕集汞的影响。氢气和CH₄没有引起任何干扰,而SO₂确实与KMnO₄发生了反应。当第一个KMnO₄捕集阱中的氧化能力因SO₂而耗尽时,汞被捕获在第二个KMnO₄捕集阱中,该捕集阱起到了安全捕集阱的作用。在两个KMnO₄捕集阱中收集的汞的回收率达到了99.5%。然而,当将HS引入系统时,汞的回收率下降了近50%。这一观察结果归因于当KMnO₄捕集阱的氧化能力被消耗时,捕集阱中形成了硫化汞(HgS)。HgS不能被氯化亚锡(SnCl₂)还原,而SnCl₂是CV-AFS检测所必需的。通过在两个KMnO₄捕集阱之前添加一个带有还原剂硼氢化钠(NaBH₄)的碱性捕集阱,克服了这个问题。在这个捕集阱中,HS被转化为S,其不会到达KMnO₄捕集阱,同时NaBH₄防止汞被氧化为Hg²⁺,随后沉淀为HgS。当1000毫升HS通过冲击器装置时,汞的回收率达到了98.05±3.6%(n = 3)。该方法的现场测试验证了HS对热液气体中汞捕集以及最终测定的影响。使用碱性捕集阱时,我们测定的汞浓度为358纳克/立方米,而不使用碱性捕集阱时仅为101纳克/立方米。因此,没有碱性捕集阱的装置导致实际汞浓度被低估了71.8%,并证实了需要一个碱性捕集阱来克服HS的干扰。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验