CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Material Research and Development, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China.
School of Environmental Science and Technology, Xiangtan University, Xiangtan 411105, China.
J Environ Sci (China). 2019 Jun;80:208-217. doi: 10.1016/j.jes.2018.12.014. Epub 2018 Dec 29.
The heterogeneous photo-Fenton reaction is an effective technique in combating organic contaminants for both soil and water remediation, and extensive studies have focused on enhancing its efficiency and reducing its costs. In this work, we developed novel photo-Fenton catalysts by simply milling commercially available TiO (P25) with Schwertmannite (Sh), a natural iron-oxyhydroxysulfate nanomineral. We expect that the photo-generated electrons from TiO could continuously migrate to Sh, which then could enhance the separation of electron-hole pairs on TiO and accelerate the reduction of Fe(III) to Fe(II) on Sh, leading to high degradation efficiency of the target organic contaminants. SEM and TEM results showed the distribution of TiO on Sh surface for the nanocomposites (TiO/Sh). Under simulated sunlight irradiation, the much higher content of Fe(II) was determined on TiO/Sh than on Sh via a common method in the iron ore, and the consumption of HO and the production of •OH were more significant in the TiO/Sh system than those in the TiO and Sh systems. These results well support our hypothesis that the photo-generated electrons could migrate from TiO to Sh on the composites, and can also explain the much higher degradation efficiency of Rhodamine B (RhB) in the TiO/Sh system. Besides, TiO/Sh had lower Fe dissolution as compared with Sh, and retained high catalytic stability after four repeated cycles. Above merits of the TiO/Sh composites, in combining with their simple synthesis method and low-cost property, indicated that they should have promising applications as heterogeneous photo-Fenton catalysts.
非均相类芬顿反应是一种用于土壤和水修复的有效技术,用于处理有机污染物,广泛的研究集中在提高其效率和降低成本上。在这项工作中,我们通过简单地用 Schwertmannite(Sh)研磨市售的 TiO(P25)来制备新型类芬顿催化剂,Schwertmannite 是一种天然的铁氧羟硫酸盐纳米矿物。我们期望 TiO 产生的光生电子可以连续迁移到 Sh 上,从而增强 TiO 上电子-空穴对的分离,并加速 Sh 上 Fe(III)还原为 Fe(II),从而实现目标有机污染物的高效降解。SEM 和 TEM 结果表明,纳米复合材料(TiO/Sh)中 TiO 分布在 Sh 表面上。在模拟阳光照射下,通过铁矿中常用的方法,确定 TiO/Sh 上的 Fe(II)含量比 Sh 上高得多,并且 TiO/Sh 体系中的 HO 消耗和 •OH 生成比 TiO 和 Sh 体系中的更显著。这些结果很好地支持了我们的假设,即光生电子可以从复合材料中的 TiO 迁移到 Sh 上,也可以解释 Rhodamine B(RhB)在 TiO/Sh 体系中降解效率更高的原因。此外,与 Sh 相比,TiO/Sh 的 Fe 溶解量较低,并且在经过四个重复循环后仍保持高催化稳定性。TiO/Sh 复合材料具有上述优点,再加上其简单的合成方法和低成本特性,表明它们作为非均相类芬顿催化剂具有广阔的应用前景。