École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, Canada.
Institut sur la nutrition et les aliments fonctionnels, Québec, Canada.
Microbiome. 2019 Apr 5;7(1):56. doi: 10.1186/s40168-019-0669-7.
Low-abundance microorganisms of the gut microbiome are often referred to as a reservoir for antibiotic resistance genes. Unfortunately, these less-abundant bacteria can be overlooked by deep shotgun sequencing. In addition, it is a challenge to associate the presence of resistance genes with their risk of acquisition by pathogens. In this study, we used liquid culture enrichment of stools to assemble the genome of lower-abundance bacteria from fecal samples. We then investigated the gene content recovered from these culture-enriched and culture-independent metagenomes in relation with their taxonomic origin, specifically antibiotic resistance genes. We finally used a pangenome approach to associate resistance genes with the core or accessory genome of Enterobacteriaceae and inferred their propensity to horizontal gene transfer.
Using culture-enrichment approaches with stools allowed assembly of 187 bacterial species with an assembly size greater than 1 million nucleotides. Of these, 67 were found only in culture-enriched conditions, and 22 only in culture-independent microbiomes. These assembled metagenomes allowed the evaluation of the gene content of specific subcommunities of the gut microbiome. We observed that differentially distributed metabolic enzymes were associated with specific culture conditions and, for the most part, with specific taxa. Gene content differences between microbiomes, for example, antibiotic resistance, were for the most part not associated with metabolic enzymes, but with other functions. We used a pangenome approach to determine if the resistance genes found in Enterobacteriaceae, specifically E. cloacae or E. coli, were part of the core genome or of the accessory genome of this species. In our healthy volunteer cohort, we found that E. cloacae contigs harbored resistance genes that were part of the core genome of the species, while E. coli had a large accessory resistome proximal to mobile elements.
Liquid culture of stools contributed to an improved functional and comparative genomics study of less-abundant gut bacteria, specifically those associated with antibiotic resistance. Defining whether a gene is part of the core genome of a species helped in interpreting the genomes recovered from culture-independent or culture-enriched microbiomes.
肠道微生物组中的低丰度微生物通常被称为抗生素耐药基因的储备库。不幸的是,这些丰度较低的细菌可能会被深度 shotgun 测序忽略。此外,将耐药基因的存在与其被病原体获得的风险相关联也是一个挑战。在这项研究中,我们使用粪便的液体培养富集来组装来自粪便样本的低丰度细菌的基因组。然后,我们调查了从这些培养富集和非培养宏基因组中回收的基因内容与它们的分类起源的关系,特别是抗生素耐药基因。我们最后使用泛基因组方法将耐药基因与肠杆菌科的核心或附属基因组相关联,并推断它们发生水平基因转移的倾向。
使用粪便的培养富集方法允许组装 187 个组装大小大于 100 万个核苷酸的细菌种。其中,有 67 个仅在培养富集条件下发现,22 个仅在非培养微生物组中发现。这些组装的宏基因组允许评估肠道微生物组的特定亚群的基因内容。我们观察到,差异分布的代谢酶与特定的培养条件相关,在大多数情况下,与特定的分类群相关。微生物组之间的基因内容差异,例如抗生素耐药性,与代谢酶大部分没有关联,而是与其他功能有关。我们使用泛基因组方法来确定在肠杆菌科中发现的耐药基因,特别是阴沟肠杆菌或大肠杆菌,是否属于该物种的核心基因组或附属基因组的一部分。在我们的健康志愿者队列中,我们发现阴沟肠杆菌的基因丛含有该物种核心基因组的耐药基因,而大肠杆菌则在靠近移动元件的位置具有较大的附属耐药组。
粪便的液体培养有助于对低丰度肠道细菌进行更完善的功能和比较基因组学研究,特别是那些与抗生素耐药性相关的细菌。确定一个基因是否属于一个物种的核心基因组有助于解释从非培养或培养富集微生物组中回收的基因组。