Suppr超能文献

体心立方和 cI16 硬球晶体的密度泛函理论研究。

Density-functional theory study of the body-centered-cubic and cI16 hard-sphere crystals.

机构信息

Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003-9303, USA.

Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701-1201, USA.

出版信息

J Chem Phys. 2019 Apr 7;150(13):134506. doi: 10.1063/1.5090651.

Abstract

The properties of the body-centered-cubic (bcc) solid phase of hard spheres are challenging to compute because of its lack of mechanical and thermodynamic stability, yet this structure remains of interest for theoretical and practical reasons. Density-functional theory (DFT) studies of the bcc hard-sphere solid, using the most accurate functionals from fundamental measure theory, have yielded results with unphysical behaviors in structural and thermodynamic properties. We recently reported [Warshavsky et al., J. Chem. Phys. 148, 024502 (2018)] a Monte Carlo (MC) simulation study of hard spheres initiated in a bcc structure. We observed that such systems, even under constant-volume and single-occupancy-cell constraints, rapidly evolved into either a crystalline state with the cI16 structure or one of a few amorphous states. With these observations in mind, we revisited the DFT calculations of the bcc hard-sphere system by allowing for a bcc-to-cI16 structural transformation. Specifically, the free energy functional was minimized with respect to a density profile having two scalar parameters: the traditional alpha parameter characterizing the width of the Gaussian density distribution around each lattice site and a geometric parameter characterizing the bcc-to-cI16 structural transition. The numerical solutions were physically reasonable across the entire density range. At all densities above ρσ = 1.0, a cI16 structure had lower free energy than the corresponding perfect bcc structure. The degree of lattice distortion from bcc to cI16 increased with density up to the close-packing limit. Finally, the predicted values of the structural and thermodynamic properties were in excellent agreement with those extracted from our previous MC simulations.

摘要

体心立方(bcc)硬球固相的性质由于缺乏机械和热力学稳定性而难以计算,但由于理论和实际原因,这种结构仍然具有重要意义。使用来自基础测量理论的最准确泛函的密度泛函理论(DFT)对 bcc 硬球固体的研究,在结构和热力学性质方面产生了具有非物理行为的结果。我们最近报道[Warshavsky 等人,J. Chem. Phys. 148, 024502(2018)],对处于 bcc 结构的硬球进行了蒙特卡罗(MC)模拟研究。我们观察到,即使在恒容和单占据单元约束下,这些系统也会迅速演变成具有 cI16 结构的结晶态或几种非晶态之一。考虑到这些观察结果,我们通过允许 bcc 到 cI16 结构转变来重新审视 bcc 硬球系统的 DFT 计算。具体来说,自由能泛函相对于具有两个标量参数的密度分布进行最小化:传统的 alpha 参数,用于描述每个晶格位置周围高斯密度分布的宽度,以及用于描述 bcc 到 cI16 结构转变的几何参数。数值解在整个密度范围内都是合理的。在所有密度高于 ρσ=1.0 时,cI16 结构的自由能低于相应的完美 bcc 结构。从 bcc 到 cI16 的晶格畸变程度随密度增加到紧密堆积极限而增加。最后,预测的结构和热力学性质值与我们之前的 MC 模拟中提取的值非常吻合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验