Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom.
Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37831, USA.
J Chem Phys. 2019 Apr 7;150(13):134701. doi: 10.1063/1.5087577.
The interaction of atomic and molecular hydrogen with actinide dioxide (AnO, An = U, Np, Pu) (111) surfaces has been investigated by DFT+U, where noncollinear 3k antiferromagnetic behaviour and spin-orbit interactions are considered. The adsorption of atomic hydrogen forms a hydroxide group, coupled to the reduction of an actinide ion. The energy of atomic hydrogen adsorption on the UO (0.82 eV), NpO (-0.10 eV), and PuO (-1.25 eV) surfaces has been calculated. The dissociation of molecular hydrogen is not observed, shown to be due to kinetic rather than thermodynamic factors. As a barrier to the formation of a second hydroxyl group, an unusual charge distribution has been shown. This could be a limitation of a (1·1) unit cell method or an artefact of the systems. The recombination of hydrogen ions on the AnO (111) surfaces is favoured over hydroxide formation.
通过 DFT+U 方法研究了原子和分子氢与锕系二氧化物(AnO,An=U、Np、Pu)(111)表面的相互作用,其中考虑了非共线 3k 反铁磁行为和自旋轨道相互作用。原子氢的吸附形成了氢氧根基团,与锕系离子的还原相耦合。计算了原子氢在 UO(0.82 eV)、NpO(-0.10 eV)和 PuO(-1.25 eV)表面上的吸附能。未观察到分子氢的离解,表明这是由于动力学而不是热力学因素。作为形成第二个羟基的障碍,显示出一种不寻常的电荷分布。这可能是(1·1)单元方法的限制或系统的人为产物。在 AnO(111)表面上,氢离子的复合比氢氧根的形成更有利。