Suppr超能文献

利用响应面法(RSM)和人工神经网络(ANN)优化磁性纳米沸石从二元溶液中去除锶和铯离子。

Optimizing the removal of strontium and cesium ions from binary solutions on magnetic nano-zeolite using response surface methodology (RSM) and artificial neural network (ANN).

机构信息

Hot Lab. Center, Atomic Energy Authority of Egypt, P.O. No. 13759, Cairo, Egypt.

Hot Lab. Center, Atomic Energy Authority of Egypt, P.O. No. 13759, Cairo, Egypt.

出版信息

Environ Res. 2019 Jun;173:397-410. doi: 10.1016/j.envres.2019.03.055. Epub 2019 Mar 28.

Abstract

The feasibility of using magnetic nano-zeolite (MNZ) to remove cesium and strontium from their binary corrosive solutions was investigated by considering the multi-variant/multi-objective nature of the process. RSM (Response Surface Methodology) and ANN (Artificial Neural Network) were used to model and optimize the removal system and assess sensitive parameters that can affect the process reliability. MNZ is characterized by its high surface area and cation exchange capacity and possesses good regeneration behavior for both elements using citric acid. Its stability is comparable to other sorbents in acidic media and the stability increases in alkaline media, where dissolution rate follow first order reaction on heterogeneous sites. MNZ removes both contaminants simultaneously with small tendency toward Cs, where MNZ is suggested for application in pre-treatment of highly contaminated alkaline solutions. The percentage removal, decontamination factors, and separation factors have different dependency on the effluent/process conditions; this dependency is the same for both contaminants. Sorption kinetics is initially controlled by external mass transfer through the boundaries then intra-particle diffusion dominates the reactions. The process sensitivity to pH changes is attributed to changes in structural elements -species distribution at the solid/aqueous interface. Cs and Sr are exchanged with Na and H, regardless the effluent pH value, and with Al and Fe cations at specific pH. Isosteric heat of sorption calculations indicated that the total heat needed to complete the reaction was considerably reduced by operating the process at optimized temperature.

摘要

通过考虑过程的多变量/多目标性质,研究了使用磁性纳米沸石 (MNZ) 从二元腐蚀性溶液中去除铯和锶的可行性。RSM(响应面法)和 ANN(人工神经网络)用于对去除系统进行建模和优化,并评估可能影响过程可靠性的敏感参数。MNZ 的特点是比表面积和阳离子交换容量高,并且使用柠檬酸对两种元素都具有良好的再生性能。其在酸性介质中的稳定性与其他吸附剂相当,在碱性介质中稳定性增加,其中溶解速率在非均相位上遵循一级反应。MNZ 同时去除两种污染物,对 Cs 的去除趋势较小,因此建议将 MNZ 应用于高污染碱性溶液的预处理。去除率、去污因子和分离因子对流出物/工艺条件的依赖性不同;这两种污染物的依赖性相同。吸附动力学最初受通过边界的外部质量传递控制,然后颗粒内扩散主导反应。该过程对 pH 值变化的敏感性归因于结构元素的变化-固/水界面处的物种分布。Cs 和 Sr 与 Na 和 H 交换,无论流出物 pH 值如何,并且在特定 pH 值下与 Al 和 Fe 阳离子交换。吸附等焓计算表明,通过在优化温度下操作该过程,完成反应所需的总热量大大降低。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验