Suppr超能文献

基于放射组学特征的胸部X光片肺野分割方法

Segmentation of lung fields from chest radiographs-a radiomic feature-based approach.

作者信息

Hooda Rahul, Mittal Ajay, Sofat Sanjeev

机构信息

2Department of Computer Science and Engineering, Punjab Engineering College, Chandigarh, India.

1UIET, Panjab University, Chandigarh, India.

出版信息

Biomed Eng Lett. 2018 Oct 17;9(1):109-117. doi: 10.1007/s13534-018-0086-z. eCollection 2019 Feb.

Abstract

Precisely segmented lung fields restrict the region-of-interest from which radiological patterns are searched, and is thus an indispensable prerequisite step in any chest radiographic CADx system. Recently, a number of deep learning-based approaches have been proposed to implement this step. However, deep learning has its own limitations and cannot be used in resource-constrained settings. Medical systems generally have limited RAM, computational power, storage, and no GPUs. They are thus not always suited for running deep learning-based models. Shallow learning-based models with appropriately selected features give comparable performance but with modest resources. The present paper thus proposes a shallow learning-based method that makes use of 40 radiomic features to segment lung fields from chest radiographs. A distance regularized level set evolution (DRLSE) method along with other post-processing steps are used to refine its output. The proposed method is trained and tested using publicly available JSRT dataset. The testing results indicate that the performance of the proposed method is comparable to the state-of-the-art deep learning-based lung field segmentation (LFS) methods and better than other LFS methods.

摘要

精确分割的肺野限制了搜索放射学模式的感兴趣区域,因此是任何胸部X线计算机辅助诊断(CADx)系统中不可或缺的前提步骤。最近,已经提出了许多基于深度学习的方法来实现这一步骤。然而,深度学习有其自身的局限性,不能用于资源受限的环境。医疗系统通常随机存取存储器(RAM)有限、计算能力有限、存储有限且没有图形处理器(GPU)。因此,它们并不总是适合运行基于深度学习的模型。具有适当选择特征的基于浅层学习的模型具有可比的性能,但资源需求适中。因此,本文提出了一种基于浅层学习的方法,该方法利用40个放射组学特征从胸部X光片中分割肺野。使用距离正则化水平集演化(DRLSE)方法以及其他后处理步骤来优化其输出。所提出的方法使用公开可用的日本放射学会(JSRT)数据集进行训练和测试。测试结果表明,所提出方法的性能与基于深度学习的最先进肺野分割(LFS)方法相当,且优于其他LFS方法。

相似文献

1
Segmentation of lung fields from chest radiographs-a radiomic feature-based approach.基于放射组学特征的胸部X光片肺野分割方法
Biomed Eng Lett. 2018 Oct 17;9(1):109-117. doi: 10.1007/s13534-018-0086-z. eCollection 2019 Feb.
9
Extraction of Aortic Knuckle Contour in Chest Radiographs Using Deep Learning.利用深度学习提取胸部X光片中的主动脉结轮廓
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5890-5893. doi: 10.1109/EMBC.2018.8513560.

本文引用的文献

5
8
Active shape model segmentation with optimal features.具有最优特征的主动形状模型分割
IEEE Trans Med Imaging. 2002 Aug;21(8):924-33. doi: 10.1109/TMI.2002.803121.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验