Suppr超能文献

基于阈值-梯度组合和改进凸壳方法的肺 CT 图像分割算法研究。

Study on lung CT image segmentation algorithm based on threshold-gradient combination and improved convex hull method.

机构信息

School of Computer Science and Technology (School of Artificial Intelligence), Zhejiang Sci-tech University, Hangzhou, 310018, Zhejiang, People's Republic of China.

School of Information Science and Engineering, Zhejiang Sci-tech University, Hangzhou, 310018, Zhejiang, People's Republic of China.

出版信息

Sci Rep. 2024 Jul 31;14(1):17731. doi: 10.1038/s41598-024-68409-4.

Abstract

Lung images often have the characteristics of strong noise, uneven grayscale distribution, and complex pathological structures, which makes lung image segmentation a challenging task. To solve this problems, this paper proposes an initial lung mask extraction algorithm that combines threshold and gradient. The gradient used in the algorithm is obtained by the time series feature extraction method based on differential memory (TFDM), which is obtained by the grayscale threshold and image grayscale features. At the same time, we also proposed a lung contour repair algorithm based on the improved convex hull method to solve the contour loss caused by solid nodules and other lesions. Experimental results show that on the COVID-19 CT segmentation dataset, the advanced lung segmentation algorithm proposed in this article achieves better segmentation results and greatly improves the consistency and accuracy of lung segmentation. Our method can obtain more lung information, resulting in ideal segmentation effects with improved accuracy and robustness.

摘要

肺部图像通常具有强噪声、灰度分布不均匀和复杂病理结构的特点,这使得肺部图像分割成为一项具有挑战性的任务。为了解决这个问题,本文提出了一种结合阈值和梯度的初始肺掩模提取算法。该算法中使用的梯度是通过基于差分记忆的时间序列特征提取方法(TFDM)获得的,该方法是通过灰度阈值和图像灰度特征获得的。同时,我们还提出了一种基于改进的凸包方法的肺部轮廓修复算法,以解决由于实性结节和其他病变导致的轮廓丢失问题。实验结果表明,在 COVID-19 CT 分割数据集上,本文提出的高级肺部分割算法实现了更好的分割结果,大大提高了肺部分割的一致性和准确性。我们的方法可以获得更多的肺部信息,从而获得具有更高准确性和鲁棒性的理想分割效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1820/11291637/87056c6e34a6/41598_2024_68409_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验