Matos Marina, F Sousa Andreia, H C S Silva Nuno, S R Freire Carmen, Andrade Márcia, Mendes Adélio, J D Silvestre Armando
CICECO-Aveiro Institute of Materials, Departmento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
Polymers (Basel). 2018 Jul 24;10(8):810. doi: 10.3390/polym10080810.
Polyesters made from 2,5-furandicarboxylic acid (FDCA) have been in the spotlight due to their renewable origins, together with the promising thermal, mechanical, and/or barrier properties. Following the same trend, (nano)composite materials based on FDCA could also generate similar interest, especially because novel materials with enhanced or refined properties could be obtained. This paper presents a case study on the use of furanoate-based polyesters and bacterial cellulose to prepare nanocomposites, namely acetylated bacterial cellulose/poly(butylene 2,5-furandicarboxylate) and acetylated bacterial cellulose/poly(butylene 2,5-furandicarboxylate)--(butylene diglycolate)s. The balance between flexibility, prompted by the furanoate-diglycolate polymeric matrix; and the high strength prompted by the bacterial cellulose fibres, enabled the preparation of a wide range of new nanocomposite materials. The new nanocomposites had a glass transition between -25⁻46 °C and a melting temperature of 61⁻174 °C; and they were thermally stable up to 239⁻324 °C. Furthermore, these materials were highly reinforced materials with an enhanced Young's modulus (up to 1239 MPa) compared to their neat copolyester counterparts. This was associated with both the reinforcing action of the cellulose fibres and the degree of crystallinity of the nanocomposites. In terms of elongation at break, the nanocomposites prepared from copolyesters with higher amounts of diglycolate moieties displayed higher elongations due to the soft nature of these segments.
由2,5-呋喃二甲酸(FDCA)制成的聚酯因其可再生来源以及良好的热性能、机械性能和/或阻隔性能而备受关注。遵循同样的趋势,基于FDCA的(纳米)复合材料也可能引发类似的兴趣,特别是因为可以获得具有增强或优化性能的新型材料。本文介绍了一个使用呋喃酸酯基聚酯和细菌纤维素制备纳米复合材料的案例研究,即乙酰化细菌纤维素/聚(2,5-呋喃二甲酸丁二醇酯)和乙酰化细菌纤维素/聚(2,5-呋喃二甲酸丁二醇酯)-(丁二醇二酸酯)。呋喃酸酯-二醇酸酯聚合物基体带来的柔韧性与细菌纤维素纤维带来的高强度之间的平衡,使得能够制备出多种新型纳米复合材料。新型纳米复合材料的玻璃化转变温度在-25至46°C之间,熔点在61至174°C之间;它们在高达239至324°C的温度下具有热稳定性。此外,与纯共聚酯相比,这些材料是具有增强杨氏模量(高达1239 MPa)的高强度材料。这与纤维素纤维的增强作用和纳米复合材料的结晶度有关。就断裂伸长率而言,由含有较高量二醇酸酯部分的共聚酯制备的纳米复合材料由于这些链段的柔软性质而表现出更高的伸长率。