Suppr超能文献

剪纸壳中的凸起传播。

Propagation of pop ups in kirigami shells.

机构信息

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.

Department of Materials, ETH Zürich, 8093 Zürich, Switzerland.

出版信息

Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8200-8205. doi: 10.1073/pnas.1817763116. Epub 2019 Apr 8.

Abstract

Kirigami-inspired metamaterials are attracting increasing interest because of their ability to achieve extremely large strains and shape changes via out-of-plane buckling. While in flat kirigami sheets, the ligaments buckle simultaneously as Euler columns, leading to a continuous phase transition; here, we demonstrate that kirigami shells can also support discontinuous phase transitions. Specifically, we show via a combination of experiments, numerical simulations, and theoretical analysis that, in cylindrical kirigami shells, the snapping-induced curvature inversion of the initially bent ligaments results in a pop-up process that first localizes near an imperfection and then, as the deformation is increased, progressively spreads through the structure. Notably, we find that the width of the transition zone as well as the stress at which propagation of the instability is triggered can be controlled by carefully selecting the geometry of the cuts and the curvature of the shell. Our study significantly expands the ability of existing kirigami metamaterials and opens avenues for the design of the next generation of responsive surfaces as demonstrated by the design of a smart skin that significantly enhances the crawling efficiency of a simple linear actuator.

摘要

剪纸启发的超材料由于其通过面外屈曲实现极大应变和形状变化的能力而引起了越来越多的关注。虽然在平面剪纸片中,韧带作为欧拉柱同时屈曲,导致连续相变;但在这里,我们证明了剪纸壳也可以支持不连续相变。具体来说,我们通过实验、数值模拟和理论分析的结合表明,在圆柱形剪纸壳中,最初弯曲的韧带在弹起诱导下的曲率反转导致弹出过程,该过程首先在缺陷附近局部化,然后随着变形的增加,逐渐扩展到整个结构。值得注意的是,我们发现,通过仔细选择切口的几何形状和壳的曲率,可以控制过渡区的宽度以及引发不稳定性传播的应力。我们的研究极大地扩展了现有剪纸超材料的能力,并为下一代响应表面的设计开辟了途径,我们设计的智能皮肤显著提高了简单线性执行器的爬行效率,这证明了这一点。

相似文献

1
Propagation of pop ups in kirigami shells.
Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8200-8205. doi: 10.1073/pnas.1817763116. Epub 2019 Apr 8.
2
Buckling-Induced Kirigami.
Phys Rev Lett. 2017 Feb 24;118(8):084301. doi: 10.1103/PhysRevLett.118.084301. Epub 2017 Feb 21.
3
Shape morphing Kirigami mechanical metamaterials.
Sci Rep. 2016 Aug 5;6:31067. doi: 10.1038/srep31067.
4
Grasping with kirigami shells.
Sci Robot. 2021 May 12;6(54). doi: 10.1126/scirobotics.abd6426.
5
Auxetic Kirigami Metamaterials upon Large Stretching.
ACS Appl Mater Interfaces. 2023 Apr 19;15(15):19190-19198. doi: 10.1021/acsami.3c00946. Epub 2023 Apr 7.
6
Pneumatic Soft Actuators With Kirigami Skins.
Front Robot AI. 2021 Sep 13;8:749051. doi: 10.3389/frobt.2021.749051. eCollection 2021.
7
Engineering by Cuts: How Kirigami Principle Enables Unique Mechanical Properties and Functionalities.
Adv Sci (Weinh). 2022 Oct 30;10(1):e2204733. doi: 10.1002/advs.202204733.
8
Geometrically controlled snapping transitions in shells with curved creases.
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11175-80. doi: 10.1073/pnas.1509228112. Epub 2015 Aug 20.
9
Design of a Kirigami Structure with a Large Uniform Deformation Region.
Micromachines (Basel). 2021 Jan 12;12(1):76. doi: 10.3390/mi12010076.
10
Theorem for the design of deployable kirigami tessellations with different topologies.
Phys Rev E. 2021 Nov;104(5-2):055006. doi: 10.1103/PhysRevE.104.055006.

引用本文的文献

1
From to : Diverse applications of kirigami technology in medical devices.
Mater Today Bio. 2025 Jun 11;33:101961. doi: 10.1016/j.mtbio.2025.101961. eCollection 2025 Aug.
2
Multimodal Limbless Crawling Soft Robot with a Kirigami Skin.
Cyborg Bionic Syst. 2025 Jun 9;6:0301. doi: 10.34133/cbsystems.0301. eCollection 2025.
3
Lessons from Nature for Carbon-Based Nanoarchitected Metamaterials.
Small Sci. 2022 Nov 13;2(12):2200039. doi: 10.1002/smsc.202200039. eCollection 2022 Dec.
4
Folding a single high-genus surface into a repertoire of metamaterial functionalities.
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2413370121. doi: 10.1073/pnas.2413370121. Epub 2024 Nov 8.
5
Harnessing plasticity in sequential metamaterials for ideal shock absorption.
Nature. 2024 Oct;634(8035):842-847. doi: 10.1038/s41586-024-08037-0. Epub 2024 Oct 16.
7
Diffusive kinks turn kirigami into machines.
Nat Commun. 2024 Feb 10;15(1):1255. doi: 10.1038/s41467-024-45602-7.
8
Reprogrammable, intelligent soft origami LEGO coupling actuation, computation, and sensing.
Innovation (Camb). 2023 Nov 29;5(1):100549. doi: 10.1016/j.xinn.2023.100549. eCollection 2024 Jan 8.
9
Reprogrammable Metamaterial Processors for Soft Machines.
Adv Sci (Weinh). 2024 Mar;11(11):e2305501. doi: 10.1002/advs.202305501. Epub 2023 Dec 31.
10
Modular design of curved beam-based recyclable architected materials.
Heliyon. 2023 Nov 7;9(11):e21557. doi: 10.1016/j.heliyon.2023.e21557. eCollection 2023 Nov.

本文引用的文献

1
Kirigami skins make a simple soft actuator crawl.
Sci Robot. 2018 Feb 21;3(15). doi: 10.1126/scirobotics.aar7555.
2
Nano-kirigami with giant optical chirality.
Sci Adv. 2018 Jul 6;4(7):eaat4436. doi: 10.1126/sciadv.aat4436. eCollection 2018 Jul.
3
Kirigami-Inspired Structures for Smart Adhesion.
ACS Appl Mater Interfaces. 2018 Feb 21;10(7):6747-6754. doi: 10.1021/acsami.7b18594. Epub 2018 Feb 7.
4
Kirigami actuators.
Soft Matter. 2017 Dec 13;13(48):9087-9092. doi: 10.1039/c7sm01693j.
5
Carbon nanotubes kirigami mechanical metamaterials.
Phys Chem Chem Phys. 2017 May 10;19(18):11032-11042. doi: 10.1039/c7cp00312a.
6
Decoupling local mechanics from large-scale structure in modular metamaterials.
Proc Natl Acad Sci U S A. 2017 Apr 4;114(14):3590-3595. doi: 10.1073/pnas.1620714114. Epub 2017 Mar 20.
7
Buckling-Induced Kirigami.
Phys Rev Lett. 2017 Feb 24;118(8):084301. doi: 10.1103/PhysRevLett.118.084301. Epub 2017 Feb 21.
8
Additive lattice kirigami.
Sci Adv. 2016 Sep 23;2(9):e1601258. doi: 10.1126/sciadv.1601258. eCollection 2016 Sep.
9
Shape morphing Kirigami mechanical metamaterials.
Sci Rep. 2016 Aug 5;6:31067. doi: 10.1038/srep31067.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验