Biology Department, Brookhaven National Laboratory, Upton, New York 11973.
Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
Plant Cell. 2019 Jun;31(6):1344-1366. doi: 10.1105/tpc.18.00778. Epub 2019 Apr 8.
Angiosperms have evolved the metabolic capacity to synthesize -hydroxyphenyl, guaiacyl (G), and syringyl (S) lignin subunits in their cell walls to better adapt to the harsh terrestrial environment. The structural characteristics of lignin subunits are essentially determined by three cytochrome P450-catalzyed reactions. NADPH-dependent cytochrome P450 oxidoreductase (CPR) is commonly regarded as the electron carrier for P450-catalyzed reactions during monolignol biosynthesis. Here, we show that cytochrome isoform D (CB5D) is an indispensable electron shuttle protein specific for S-lignin biosynthesis. Arabidopsis () CB5D localizes to the endoplasmic reticulum membrane and physically associates with monolignol P450 enzymes. Disrupting in Arabidopsis resulted in a >60% reduction in S-lignin subunit levels but no impairment in G-lignin formation compared with the wild type, which sharply contrasts with the impaired G- and S-lignin synthesis observed after disrupting , encoding Arabidopsis CPR. The defective S-lignin synthesis in mutants was rescued by the expression of the gene encoding CB5D but not with mutant CB5D devoid of its electron shuttle properties. Disrupting suppressed the catalytic activity of both cinnamic acid 4-hydroxylase and ferulate 5-hydroxylase (F5H), but eliminating specifically depleted the latter's activity. Therefore, CB5D functions as an obligate electron shuttle intermediate that specifically augments F5H-catalyzed reactions, thereby controlling S-lignin biosynthesis.
被子植物进化出了在细胞壁中合成 - 羟苯基、愈创木基(G)和丁香基(S)木质素亚基的代谢能力,以更好地适应严酷的陆地环境。木质素亚基的结构特征主要由三个细胞色素 P450 催化的反应决定。NADPH 依赖性细胞色素 P450 氧化还原酶(CPR)通常被认为是在单酚生物合成过程中 P450 催化反应的电子载体。在这里,我们表明细胞色素 P450 同工型 D(CB5D)是 S-木质素生物合成所必需的特定电子穿梭蛋白。拟南芥()CB5D 定位于内质网膜上,并与单酚 P450 酶物理结合。与野生型相比,拟南芥中的破坏导致 S-木质素亚基水平降低了 >60%,但对 G-木质素形成没有影响,这与破坏编码拟南芥 CPR 的基因后观察到的 G-和 S-木质素合成受损形成鲜明对比。表达基因编码的 CB5D 可以挽救突变体中的缺陷 S-木质素合成,但不能挽救没有电子穿梭特性的突变体 CB5D。破坏抑制了肉桂酸 4-羟化酶和阿魏酸 5-羟化酶(F5H)的催化活性,但消除了后者的活性。因此,CB5D 作为一种必需的电子穿梭中间物,特异性增强 F5H 催化反应,从而控制 S-木质素生物合成。