Wang Han, Chi Xiao, Liu ZhongRan, Yoong HerngYau, Tao LingLing, Xiao JuanXiu, Guo Rui, Wang JingXian, Dong ZhiLi, Yang Ping, Sun Cheng-Jun, Li ChangJian, Yan XiaoBing, Wang John, Chow Gan Moog, Tsymbal Evgeny Y, Tian He, Chen Jingsheng
Department of Materials Science and Engineering , National University of Singapore , 117575 Singapore.
Department of Physics , National University of Singapore , 2 Science Drive 3 , 117542 Singapore.
Nano Lett. 2019 May 8;19(5):3057-3065. doi: 10.1021/acs.nanolett.9b00441. Epub 2019 Apr 11.
Complex oxide thin-film heterostructures often exhibit magnetic properties different from those known for bulk constituents. This is due to the altered local structural and electronic environment at the interfaces, which affects the exchange coupling and magnetic ordering. The emergent magnetism at oxide interfaces can be controlled by ferroelectric polarization and has a strong effect on spin-dependent transport properties of oxide heterostructures, including magnetic and ferroelectric tunnel junctions. Here, using prototype LaSrMnO/BaTiO heterostructures, we demonstrate that ferroelectric polarization of BaTiO controls the orbital hybridization and magnetism at heterointerfaces. We observe changes in the enhanced orbital occupancy and significant charge redistribution across the heterointerfaces, affecting the spin and orbital magnetic moments of the interfacial Mn and Ti atoms. Importantly, we find that the exchange coupling between Mn and Ti atoms across the interface is tuned by ferroelectric polarization from ferromagnetic to antiferromagnetic. Our findings provide a viable route to electrically control complex magnetic configurations at artificial multiferroic interfaces, taking a step toward low-power spintronics.
复杂氧化物薄膜异质结构通常表现出与块状组分不同的磁性。这是由于界面处局部结构和电子环境的改变,这会影响交换耦合和磁有序。氧化物界面处出现的磁性可由铁电极化控制,并对氧化物异质结构的自旋相关输运性质有强烈影响,包括磁性和铁电隧道结。在此,使用原型LaSrMnO/BaTiO异质结构,我们证明了BaTiO的铁电极化控制了异质界面处的轨道杂化和磁性。我们观察到异质界面处增强的轨道占据和显著的电荷重新分布的变化,影响了界面Mn和Ti原子的自旋和轨道磁矩。重要的是,我们发现界面处Mn和Ti原子之间的交换耦合通过铁电极化从铁磁调谐为反铁磁。我们的发现为在人工多铁性界面上电控制复杂磁构型提供了一条可行途径,朝着低功耗自旋电子学迈出了一步。