Suppr超能文献

前哨淋巴结指纹图谱技术。

Sentinel lymph node fingerprinting.

机构信息

Department of Biomedical Engineering (CIAN), University of Basel, Allschwil, Switzerland. Equal contributor. Author to whom any correspondence should be addressed.

出版信息

Phys Med Biol. 2019 Jun 5;64(11):115028. doi: 10.1088/1361-6560/ab177d.

Abstract

BACKGROUND

When locating the sentinel lymph node (SLN), surgeons use state-of-the-art imaging devices, such as a 1D gamma probe or less widely spread a 2D gamma camera. These devices project the 3D subspace onto a 1D respectively 2D space, hence loosing accuracy and the depth of the SLN which is very important, especially in the head and neck area with many critical structures in close vicinity. Recent methods which use a multi-pinhole collimator and a single gamma detector image try to gain a depth estimation of the SLN. The low intensity of the sources together with the computational cost of the optimization process make the reconstruction in real-time, however, very challenging.

RESULTS

In this paper, we use an optimal design approach to improve the classical pinhole design, resulting in a non-symmetric distribution of the pinholes of the collimator. This new design shows a great improvement of the accuracy when reconstructing the position and depth of the radioactive tracer. Then, we introduce our Sentinel lymph node fingerprinting (SLNF) algorithm, inspired by MR-fingerprinting, for fast and accurate reconstruction of the tracer distribution in 3D space using a single gamma detector image. As a further advantage, the method requires no pre-processing, i.e. filtering of the detector image. The method is very stable in its performance even for low exposure times. In our ex vivo experiments, we successfully located multiple Technetium 99m (Tc-99m) sources with an exposure time of only one second and still, with a very small L -error.

CONCLUSION

These promising results under short exposure time are very encouraging for SLN biopsy. Although, this device has not been tested on patients yet, we believe: that this approach will give the surgeon accurate 3D positions of the SLN and hence, can potentially reduce the trauma for the patient.

摘要

背景

当定位前哨淋巴结 (SLN) 时,外科医生使用最先进的成像设备,如一维伽马探测器或应用范围较窄的二维伽马相机。这些设备将 3D 子空间投影到 1D 或 2D 空间,因此会丢失准确性和 SLN 的深度,这在头颈部等有许多紧邻关键结构的区域非常重要。最近使用多针孔准直器和单个伽马探测器的方法试图获得 SLN 的深度估计。由于源的强度低以及优化过程的计算成本,使得实时重建非常具有挑战性。

结果

在本文中,我们使用最优设计方法改进经典的针孔设计,导致准直器的针孔呈非对称分布。这种新设计在重建放射性示踪剂的位置和深度时显示出准确性的显著提高。然后,我们引入了我们的前哨淋巴结指纹识别 (SLNF) 算法,该算法受到磁共振指纹识别的启发,使用单个伽马探测器图像快速准确地重建示踪剂在 3D 空间中的分布。作为进一步的优势,该方法不需要预处理,即探测器图像的滤波。即使曝光时间很短,该方法的性能也非常稳定。在我们的离体实验中,我们成功定位了多个锝 99m(Tc-99m)源,仅需 1 秒的曝光时间,并且 L-误差非常小。

结论

这些在短曝光时间下的有希望的结果非常鼓舞人心,可为 SLN 活检提供帮助。虽然该设备尚未在患者身上进行测试,但我们相信:这种方法将为外科医生提供 SLN 的准确 3D 位置,从而有可能减少患者的创伤。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验