Kim Myounguk, Park Sunmin, Park Jongshin
Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea.
Ceramic Fiber & Composite Center, Korea Institute of Ceramic Engineering and Technology, Jinju 52851, Korea.
Polymers (Basel). 2017 Sep 15;9(9):452. doi: 10.3390/polym9090452.
In this study, the PPS/MWCNTs/AlN composite was prepared with poly(phenylene sulfide) (PPS), covalent functionalized multi-walled carbon nanotubes (fMWCNTs), and aluminum nitride (AlN) via melt-blending techniques. The AlN is a fascinating non-oxidizing ceramic material having the highest thermal conductivity among the ceramic materials. In order to introduce the functional groups on the surface of the AlN particles, a silane coupling agent was used as it is able to graft with the functional groups on the covalent functionalized MWCNTs. The silanization reaction of the AlN was confirmed qualitatively and quantitatively by FT-IR (Fourier Transform Infrared Spectroscopy), and XPS (X-ray Photoelectron Spectroscopy). The grafting reaction of the AlN particles on the MWCNTs was confirmed using UV⁻Vis (Ultraviolet-Visible Spectroscopy), FE-SEM (Field-Emission Scanning Electron Microscopy) and FE-TEM (Field-Emission Transmission Electron Microscopy) images. The grafting reaction was accomplished by observing the change of the transmittance, the morphology of the AlN particle bonded to the MWCNTs. For the morphological changes of the fractured surface of the PPS/MWCNTs/AlN composites by FE-SEM, the hybrid filler was homogeneously dispersed on the PPS matrix when the AlN particle was grafted on the MWCNTs. The homogeneous distribution of the hybrid filler acts as a heat transfer path, which led the higher thermal properties, such as thermal conductivity, thermal resistance, and melting temperature than those of not grafted MWCNTs.
在本研究中,通过熔融共混技术,用聚苯硫醚(PPS)、共价功能化多壁碳纳米管(fMWCNTs)和氮化铝(AlN)制备了PPS/MWCNTs/AlN复合材料。AlN是一种引人注目的非氧化性陶瓷材料,在陶瓷材料中具有最高的热导率。为了在AlN颗粒表面引入官能团,使用了硅烷偶联剂,因为它能够与共价功能化MWCNTs上的官能团接枝。通过傅里叶变换红外光谱(FT-IR)和X射线光电子能谱(XPS)对AlN的硅烷化反应进行了定性和定量确认。使用紫外可见光谱(UV⁻Vis)、场发射扫描电子显微镜(FE-SEM)和场发射透射电子显微镜(FE-TEM)图像确认了AlN颗粒在MWCNTs上的接枝反应。通过观察透射率的变化、与MWCNTs结合的AlN颗粒的形态来完成接枝反应。对于PPS/MWCNTs/AlN复合材料断裂表面的形态变化,通过FE-SEM观察发现,当AlN颗粒接枝在MWCNTs上时,混合填料均匀地分散在PPS基体上。混合填料的均匀分布起到了热传递路径的作用,这使得复合材料的热导率、热阻和熔点等热性能比未接枝MWCNTs的复合材料更高。