Hamui Leon, Sánchez-Vergara María Elena, Sánchez-Ruiz Rocío, Ruanova-Ferreiro Diego, Ballinas Indili Ricardo, Álvarez-Toledano Cecilio
Facultad de Ingeniería, Universidad Anáhuac México, Av. Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan C.P. 52786, Estado de México, México.
Instituto de Química, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, México D.F. 04510, México.
Polymers (Basel). 2017 Dec 23;10(1):16. doi: 10.3390/polym10010016.
It is known that one factor that affects the operation of optoelectronic devices is the effective protection of the semiconductor materials against environmental conditions. The permeation of atmospheric oxygen and water molecules into the device structure induces degradation of the electrodes and the semiconductor. As a result, in this communication we report the fabrication of semiconductor membranes consisting of Magnesium Phthalocyanine-allene (MgPc-allene) particles dispersed in Nylon 11 films. These membranes combine polymer properties with organic semiconductors properties and also provide a barrier effect for the atmospheric gas molecules. They were prepared by high vacuum evaporation and followed by thermal relaxation technique. For the characterization of the obtained membranes, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were used to determine the chemical and microstructural properties. UV-ViS, null ellipsometry, and visible photoluminescence (PL) at room temperature were used to characterize the optoelectronic properties. These results were compared with those obtained for the organic semiconductors: MgPc-allene thin films. Additionally, semiconductor membranes devices have been prepared, and a study of the device electronic transport properties was conducted by measuring electrical current density-voltage ( characteristics by four point probes with different wavelengths. The resistance properties against different environmental molecules are enhanced, maintaining their semiconductor functionality that makes them candidates for optoelectronic applications.
众所周知,影响光电器件运行的一个因素是对半导体材料进行有效保护以抵御环境条件。大气中的氧气和水分子渗透到器件结构中会导致电极和半导体退化。因此,在本通讯中,我们报告了由分散在尼龙11薄膜中的酞菁镁 - 丙二烯(MgPc - 丙二烯)颗粒组成的半导体膜的制备。这些膜将聚合物特性与有机半导体特性相结合,并且还为大气气体分子提供阻隔作用。它们是通过高真空蒸发然后采用热弛豫技术制备的。为了表征所获得的膜,使用傅里叶变换红外光谱(FT - IR)、扫描电子显微镜(SEM)和能量色散光谱(EDS)来确定其化学和微观结构特性。利用紫外 - 可见光谱、零椭偏仪以及室温下的可见光致发光(PL)来表征光电子特性。将这些结果与有机半导体:MgPc - 丙二烯薄膜所获得的结果进行了比较。此外,还制备了半导体膜器件,并通过用不同波长的四点探针测量电流密度 - 电压特性来研究器件的电子传输特性。其对不同环境分子的电阻特性得到增强,同时保持其半导体功能,这使其成为光电子应用的候选材料。