Suppr超能文献

证明简约性理论的绪论。

Prolegomena to any theory of proof simplicity.

机构信息

School of Mathematical and Natural Sciences , Arizona State University , West Campus, PO Box 37100, Phoenix, AZ 85069-7100 , USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2019 Mar 11;377(2140):20180035. doi: 10.1098/rsta.2018.0035.

Abstract

By looking at concrete examples from elementary geometry, we analyse the manner in which the simplicity of proofs could be defined. We first find that, when presented with two proofs coming from mutually incompatible sets of assumptions, the decision regarding which one is simplest can be made, if at all, only on the basis of reasoning outside of the formal aspects of the axiom systems involved. We then show that, if the axiom system is fixed, a measure of proof simplicity can be defined based on the number of uses of axioms deemed to be deep or valuable, and prove a number of new results regarding the need to use at least three times some axioms in the proof of others. One such major example is Pappus implies Desargues, which is shown to require three uses of Pappus. A similar situation is encountered with Veblen's proof that the outer form of the Pasch axiom implies the inner form thereof. The outer form needs to be used at least three times in any such proof. We also mention the likely conflicting requirements of directness of a proof and the length of a proof. This article is part of the theme issue 'The notion of 'simple proof' - Hilbert's 24th problem'.

摘要

通过从初等几何中具体的例子,我们分析了证明简洁性的定义方式。我们首先发现,当面对来自相互矛盾的假设集的两个证明时,如果可以做出判断,那么这个判断只能基于涉及的公理系统的形式方面之外的推理。然后我们证明,如果公理系统是固定的,那么可以根据被认为是深刻或有价值的公理的使用次数来定义证明简洁性的度量,并证明一些关于在其他证明中至少使用三次某些公理的必要性的新结果。一个这样的主要例子是帕普斯蕴涵德斯伽尔,它被证明需要三次使用帕普斯定律。在弗伦奇证明帕斯奇公理的外形式蕴涵内形式的过程中也遇到了类似的情况。任何这样的证明都至少需要三次使用外形式。我们还提到了证明的直接性和证明的长度之间可能存在的冲突要求。本文是主题为“简单证明的概念——希尔伯特第 24 个问题”的一部分。

相似文献

1
Prolegomena to any theory of proof simplicity.证明简约性理论的绪论。
Philos Trans A Math Phys Eng Sci. 2019 Mar 11;377(2140):20180035. doi: 10.1098/rsta.2018.0035.
4
Visual thinking and simplicity of proof.视觉思维与证明的简洁性。
Philos Trans A Math Phys Eng Sci. 2019 Mar 11;377(2140):20180032. doi: 10.1098/rsta.2018.0032.
5
The Cantor-Bernstein theorem: how many proofs?坎托-伯恩斯坦定理:有多少种证明?
Philos Trans A Math Phys Eng Sci. 2019 Mar 11;377(2140):20180031. doi: 10.1098/rsta.2018.0031.
6
Proof simplification and automated theorem proving.证明简化与自动定理证明。
Philos Trans A Math Phys Eng Sci. 2019 Mar 11;377(2140):20180034. doi: 10.1098/rsta.2018.0034.
7
Reshaping the metaphor of proof.重塑证据的隐喻。
Philos Trans A Math Phys Eng Sci. 2019 Mar 11;377(2140):20180279. doi: 10.1098/rsta.2018.0279.
8
Identification of proofs via syzygies.通过合冲来识别证据。
Philos Trans A Math Phys Eng Sci. 2019 Mar 11;377(2140):20180275. doi: 10.1098/rsta.2018.0275.
9
Explanation in mathematical conversations: an empirical investigation.数学对话中的解释:一项实证研究。
Philos Trans A Math Phys Eng Sci. 2019 Mar 11;377(2140):20180159. doi: 10.1098/rsta.2018.0159.
10
Mathematical proof: from mathematics to school mathematics.数学证明:从数学到学校数学。
Philos Trans A Math Phys Eng Sci. 2019 Mar 11;377(2140):20180045. doi: 10.1098/rsta.2018.0045.

引用本文的文献

1
Discussing Hilbert's 24th problem.讨论希尔伯特的第24个问题。
Philos Trans A Math Phys Eng Sci. 2019 Mar 11;377(2140):20180040. doi: 10.1098/rsta.2018.0040.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验