Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah.
Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019 Sep;11(5):e1556. doi: 10.1002/wnan.1556. Epub 2019 Apr 9.
Antibodies are an important class of therapeutic for treating a wide range of diseases. These versatile macromolecules can be engineered to target many different antigens and to utilize several mechanisms of action to produce a pharmacological effect. The most common antibody platform used for therapeutics is immunoglobulin G (IgG). Advances in protein-display and genetic engineering have enabled the construction and manipulation of IgG to enhance desired activity such as increasing antigen affinity, modulating pharmacokinetics, and enhancing effector functions. IgGs can also be altered to suppress undesired effects, such as immunogenicity. The main approaches to control IgG behavior include engineering the protein sequence and glycosylation of intact IgG; constructing IgG-based derivatives, including bispecific and multivalent binders; and fusing small-drug molecules or proteins to IgG-derived scaffolds. Often, a single modification applied to a given IgG can alter more than one property. The desired effects of an antibody therapeutic should be carefully tailored to the physiology and characteristics of each disease condition. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Peptide-Based Structures.
抗体是治疗多种疾病的一类重要治疗药物。这些多功能的大分子可以被设计用于靶向许多不同的抗原,并利用几种作用机制来产生药理作用。最常用于治疗的抗体平台是免疫球蛋白 G(IgG)。蛋白质展示和基因工程的进步使 IgG 的构建和操作成为可能,从而增强了所需的活性,例如增加抗原亲和力、调节药代动力学和增强效应功能。IgG 也可以被改变以抑制不需要的作用,例如免疫原性。控制 IgG 行为的主要方法包括工程化蛋白质序列和完整 IgG 的糖基化;构建 IgG 衍生的衍生物,包括双特异性和多价结合物;以及将小分子药物或蛋白质融合到 IgG 衍生的支架上。通常,应用于给定 IgG 的单一修饰可以改变不止一种特性。抗体治疗的预期效果应该根据每种疾病的生理学和特征进行精心调整。本文属于:治疗方法和药物发现 > 肿瘤疾病的纳米医学治疗方法和药物发现 > 新兴技术 仿生纳米材料 > 基于肽的结构。