Suppr超能文献

探究顺磁性配体与两亲性大分子相互作用的纳米级热力学指纹图谱。

Probing the Nanoscopic Thermodynamic Fingerprint of Paramagnetic Ligands Interacting with Amphiphilic Macromolecules.

作者信息

Reichenwallner Jörg, Schwieger Christian, Hinderberger Dariush

机构信息

Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany.

出版信息

Polymers (Basel). 2017 Jul 31;9(8):324. doi: 10.3390/polym9080324.

Abstract

Self-assembly of macromolecules with ligands is an intricate dynamic process that depends on a wide variety of parameters and forms the basis of many essential biological processes. We elucidate the underlying energetic processes of self-assembly in a model system consisting of amphiphilic core-shell polymers interacting with paramagnetic, amphiphilic ligand molecules from temperature-dependent continuous wave electron paramagnetic resonance (CW EPR) spectroscopy subsequent to spectral simulation. The involved processes as observed from the ligands' point of view are either based on temperature-dependent association constants () or dynamic rotational regime interconversion (IC) constants (). The interconversion process describes a transition from Brownian (₁) towards free (₂) diffusion of ligand. Both processes exhibit non-linear van't Hoff (ln vs. ) plots in the temperature range of liquid water and we retrieve decisive dynamic information of the system from the energetic fingerprints of ligands on the nanoscale, especially from the temperature-dependent interconversion heat capacity (∆°).

摘要

大分子与配体的自组装是一个复杂的动态过程,它取决于多种参数,并构成了许多重要生物过程的基础。我们通过光谱模拟后的温度依赖连续波电子顺磁共振(CW EPR)光谱,阐明了在由两亲性核壳聚合物与顺磁性两亲性配体分子相互作用组成的模型系统中自组装的潜在能量过程。从配体的角度观察到的相关过程要么基于温度依赖的缔合常数(),要么基于动态旋转状态互变(IC)常数()。互变过程描述了配体从布朗运动(₁)向自由扩散(₂)的转变。在液态水的温度范围内,这两个过程都呈现出非线性的范特霍夫(ln 对 )图,并且我们从纳米尺度上配体的能量指纹,特别是从温度依赖的互变热容(∆°)中获取了系统的决定性动态信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb8/6418530/2c3468595b3b/polymers-09-00324-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验