Ferrari M E, Lohman T M
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110.
Biochemistry. 1994 Nov 1;33(43):12896-910. doi: 10.1021/bi00209a022.
We have examined the effects of temperature on the equilibrium constant, Kobs, for Escherichia coli SSB tetramer binding to a series of single-stranded (ss) oligodeoxyribonucleotides, dT(pT)n, dC(pC)n, and dA(pA)n (n = 34, 55, and 69) in order to investigate the thermodynamic basis for the strong preference of E. coli SSB (and other SSB proteins) for binding polypyrimidine stretches of ss-DNA. In addition to the expected base-dependent differences in the magnitude of Kobs, we also observe qualitatively different temperature dependencies for the binding of the SSB tetramer to oligodeoxyadenylates. Linear van't Hoff plots are obtained for SSB tetramer binding to dT(pT)n and dC(pC)n, with delta H0obs ranging from -50 to -100 kcal/mol depending on the oligodeoxynucleotide length and salt concentration. In contrast, all van't Hoff plots for SSB tetramer binding to dA(pA)N are distinctly nonlinear with maxima in K(obs) occurring near 25 degrees C, indicative of an apparent large negative change in molar heat capacity (delta C0P,obs < 0). Thus for the SSB-dA(pA)n interaction, delta H0obs and delta S0obs are both highly temperature dependent, but compensate such that delta G0obs is relatively insensitive to temperature. These nonlinear nonlinear van't Hoff plots are not due to coupling of SSB assembly to dA(pA)n binding or to temperature-dependent shifts in the formation of other SSB-DNA binding modes. The nonlinear van't Hoff plots for SSB tetramer binding to dA(pA)n appear to result from the coupling of two processes: (1) the unstacking of the dA(pA)n bases (occurring with delta H0 > 0 and delta C0P = 0) and (2) the binding of SSB to the unstacked DNA (occurring with delta H0 < 0 and delta C0P = 0). Therefore, although each isolated equilibrium occurs with delta C0P approximately 0, the overall equilibrium displays an apparent delta C0P,obs < 0 due to the coupled equilibrium. The binding of SSB to dT(pT)n and dC(pC)n occurs with delta H0 < 0 and delta C0P,obs = 0, since the bases in these ss-DNA molecules do not stack appreciably. These results indicate that a nonspecific protein-DNA interaction can display a large negative apparent delta C0P; however, this effect appears not to be due to the hydrophobic effect, but rather to a temperature-dependent conformational transition in the DNA that is coupled to protein binding. Implications of these observations for other protein-nucleic acid systems are discussed.
我们研究了温度对大肠杆菌单链结合蛋白(SSB)四聚体与一系列单链(ss)寡聚脱氧核糖核苷酸dT(pT)n、dC(pC)n和dA(pA)n(n = 34、55和69)结合的平衡常数Kobs的影响,以探究大肠杆菌SSB(以及其他SSB蛋白)对ss-DNA中聚嘧啶序列具有强烈结合偏好的热力学基础。除了Kobs大小上预期的碱基依赖性差异外,我们还观察到SSB四聚体与寡聚脱氧腺苷酸结合的温度依赖性在性质上有所不同。对于SSB四聚体与dT(pT)n和dC(pC)n的结合,得到了线性的范特霍夫图,根据寡聚脱氧核苷酸长度和盐浓度的不同,观察到的标准焓变(ΔH0obs)范围为 -50至 -100 kcal/mol。相比之下,SSB四聚体与dA(pA)N结合的所有范特霍夫图都明显呈非线性,K(obs)在25℃附近出现最大值,这表明摩尔热容有明显的大的负变化(ΔC0P,obs < 0)。因此,对于SSB - dA(pA)n相互作用,ΔH0obs和ΔS0obs都高度依赖于温度,但相互补偿,使得ΔG0obs对温度相对不敏感。这些非线性的范特霍夫图并非由于SSB组装与dA(pA)n结合的耦合,也不是由于其他SSB - DNA结合模式形成中温度依赖性的变化。SSB四聚体与dA(pA)n结合的非线性范特霍夫图似乎是由两个过程的耦合导致的:(1)dA(pA)n碱基的解堆积(发生时ΔH0 > 0且ΔC0P = 0)和(2)SSB与解堆积的DNA的结合(发生时ΔH0 < 0且ΔC0P = 0)。因此,尽管每个孤立的平衡发生时ΔC0P约为0,但由于耦合平衡,整体平衡显示出明显的ΔC0P,obs < 0。SSB与dT(pT)n和dC(pC)n的结合发生时ΔH0 < 0且ΔC0P,obs = 0,因为这些ss-DNA分子中的碱基堆积不明显。这些结果表明,非特异性的蛋白质 - DNA相互作用可以表现出大的负表观ΔC0P;然而,这种效应似乎不是由于疏水效应,而是由于与蛋白质结合耦合发生的DNA中温度依赖性的构象转变。讨论了这些观察结果对其他蛋白质 - 核酸系统的意义。