Wang Menghan, Gong Mingming, Zheng Xiaolin, Zhang Kun
College of Computer Science, Zhejiang University,
Department of Biomedical Informatics, University of Pittsburgh,
Adv Neural Inf Process Syst. 2018 Dec;31:6669-6678.
Implicit feedback is widely used in collaborative filtering methods for recommendation. It is well known that implicit feedback contains a large number of values that are (MNAR); and the missing data is a mixture of negative and unknown feedback, making it difficult to learn users' negative preferences. Recent studies modeled , a latent missingness variable which indicates whether an item is exposed to a user, to give each missing entry a confidence of being negative feedback. However, these studies use static models and ignore the information in temporal dependencies among items, which seems to be an essential underlying factor to subsequent missingness. To model and exploit the dynamics of missingness, we propose a latent variable named "" to govern the temporal changes of item missingness, and a hidden Markov model to represent such a process. The resulting framework captures the dynamic item missingness and incorporate it into matrix factorization (MF) for recommendation. We also explore two types of constraints to achieve a more compact and interpretable representation of . Experiments on real-world datasets demonstrate the superiority of our method against state-of-the-art recommender systems.
隐式反馈在推荐的协同过滤方法中被广泛使用。众所周知,隐式反馈包含大量(非随机缺失)的值;并且缺失数据是负面反馈和未知反馈的混合,这使得学习用户的负面偏好变得困难。最近的研究对一个潜在的缺失变量进行建模,该变量表示一个项目是否展示给用户,以便为每个缺失条目赋予作为负面反馈的置信度。然而,这些研究使用静态模型,忽略了项目之间时间依赖性中的信息,而这似乎是后续缺失的一个重要潜在因素。为了对缺失的动态进行建模和利用,我们提出一个名为“”的潜在变量来控制项目缺失的时间变化,并使用一个隐马尔可夫模型来表示这样一个过程。由此产生的框架捕捉动态项目缺失,并将其纳入矩阵分解(MF)进行推荐。我们还探索了两种类型的约束,以实现对的更紧凑和可解释的表示。在真实世界数据集上的实验证明了我们的方法相对于现有推荐系统的优越性。