Suppr超能文献

阿姆达尔定律如何限制大型人工神经网络的性能:基于处理器的模拟器上全规模大脑模拟功能受限的原因。

How Amdahl's Law limits the performance of large artificial neural networks : why the functionality of full-scale brain simulation on processor-based simulators is limited.

作者信息

Végh János

机构信息

Kalimános BT, Komlóssy u 26, Debrecen, 4032, Hungary.

出版信息

Brain Inform. 2019 Apr 11;6(1):4. doi: 10.1186/s40708-019-0097-2.

Abstract

With both knowing more and more details about how neurons and complex neural networks work and having serious demand for making performable huge artificial networks, more and more efforts are devoted to build both hardware and/or software simulators and supercomputers targeting artificial intelligence applications, demanding an exponentially increasing amount of computing capacity. However, the inherently parallel operation of the neural networks is mostly simulated deploying inherently sequential (or in the best case: sequential-parallel) computing elements. The paper shows that neural network simulators, (both software and hardware ones), akin to all other sequential-parallel computing systems, have computing performance limitation due to deploying clock-driven electronic circuits, the 70-year old computing paradigm and Amdahl's Law about parallelized computing systems. The findings explain the limitations/saturation experienced in former studies.

摘要

随着人们对神经元和复杂神经网络的工作方式了解得越来越详细,并且对构建可运行的大型人工网络有迫切需求,越来越多的努力致力于开发针对人工智能应用的硬件和/或软件模拟器以及超级计算机,这需要指数级增长的计算能力。然而,神经网络固有的并行操作大多是通过部署本质上是顺序(或者在最佳情况下:顺序-并行)的计算元件来模拟的。本文表明,与所有其他顺序-并行计算系统类似,神经网络模拟器(包括软件和硬件模拟器)由于采用时钟驱动的电子电路、有70年历史的计算范式以及关于并行计算系统的阿姆达尔定律,存在计算性能限制。这些发现解释了先前研究中所经历的局限性/饱和现象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e8d/6458202/9bb0647b99c3/40708_2019_97_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验