Department of Molecular & Cellular Biochemistry , Indiana University , Simon Hall Room 405C, 212 South Hawthorne Drive , Bloomington , Indiana 47405 , United States.
Structural Genomics Consortium , University of Toronto , Toronto , Ontario M5G 1L7 , Canada.
Biochemistry. 2019 May 7;58(18):2326-2338. doi: 10.1021/acs.biochem.9b00011. Epub 2019 Apr 24.
Chromokinesins NOD and KID have similar DNA binding domains and functions during cell division, while their motor domain sequences show significant variations. It has been unclear whether these motors have the similar structure, chemistry, and microtubule interactions necessary to follow a similar mechanism of force generation. We used biochemical rate measurements, cosedimentation, and structural analysis to investigate the ATPase mechanisms of the NOD and KID core domains. These studies revealed that NOD and KID have different ATPase mechanisms, microtubule interactions, and catalytic domain structures. The ATPase cycles of NOD and KID have different rate-limiting steps. The ATPase rate of NOD was robustly stimulated by microtubules, and its microtubule affinity was weakened in all nucleotide-bound states. KID bound microtubules tightly in all nucleotide states and remained associated with the microtubule for more than 100 cycles of ATP hydrolysis before dissociating. The structure of KID was most like that of conventional kinesin (KIF5). Key differences in the microtubule binding region and allosteric communication pathway between KID and NOD are consistent with our biochemical data. Our results support the model in which NOD and KID utilize distinct mechanistic pathways to achieve the same function during cell division.
染色质运动蛋白 NOD 和 KID 在细胞分裂过程中具有相似的 DNA 结合结构域和功能,但其马达结构域序列存在显著差异。这些马达是否具有相似的结构、化学性质和微管相互作用,从而遵循相似的力产生机制,目前尚不清楚。我们使用生化速率测量、共沉淀和结构分析来研究 NOD 和 KID 核心结构域的 ATP 酶机制。这些研究表明,NOD 和 KID 具有不同的 ATP 酶机制、微管相互作用和催化结构域结构。NOD 和 KID 的 ATP 酶循环具有不同的限速步骤。微管能强烈刺激 NOD 的 ATP 酶活性,并且其微管亲和力在所有核苷酸结合状态下均减弱。KID 在所有核苷酸状态下都能紧密结合微管,并在与微管解离之前,在超过 100 个 ATP 水解循环中保持与微管的结合。KID 的结构与传统的驱动蛋白(KIF5)最为相似。KID 和 NOD 之间微管结合区域和变构通讯途径的关键差异与我们的生化数据一致。我们的结果支持以下模型:在细胞分裂过程中,NOD 和 KID 利用不同的机制途径来实现相同的功能。