Suppr超能文献

通过统计形状模型的 2D/3D 配准从闪烁扫描中估算甲状腺体积。

Estimation of thyroid volume from scintigraphy through 2D/3D registration of a statistical shape model.

机构信息

School of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China.

出版信息

Phys Med Biol. 2019 Apr 29;64(9):095015. doi: 10.1088/1361-6560/ab186d.

Abstract

Accurate measurement of thyroid volume is important for thyroid disease diagnosis and therapy. In nuclear medicine, the thyroid volume is usually estimated from scintigraphy images using empirical equations. However, due to the lack of volumetric information from the scintigraphy image, the accuracy of equation-based estimation is imperfect. To solve this problem, this paper proposes a method which registers a 3D thyroid statistical shape model (SSM) to a single-view scintigraphy image to achieve more accurate volume estimation. The SSM was constructed based on a training set of segmented 3D CT images, and the thyroid shape variations between the training subjects were modelled using the point distribution model. For thyroid volume estimation, the SSM was projected into the scintigraphy image of the target patient, and then the projected model shape was nonrigidly registered with the patient's scintigraphy image. The resultant 2D deformation file was back-projected to 3D space to guide the deformation of the 3D SSM. This process was repeated iteratively until convergence, and the volume of the finally deformed SSM was considered as the estimation of the patient's thyroid volume. For validation, this method was evaluated based on a test set of 20 scintigraphy images, achieving an estimation error of  -2.10%  ±  5.20% which was much less than the error of the conventional equation-based method (35.76%  ±  15.20%) based on the same test set. The robustness of this method was further tested using a challenging case, i.e. a scintigraphy image with a large thyroid tumor. For this case, the volume estimation error was only 6.08%. Our method has significantly improved the accuracy of thyroid volume estimation from scintigraphy images, and it will enhance the value of scintigraphy imaging for thyroid disease diagnosis and radioiodine therapy.

摘要

准确测量甲状腺体积对于甲状腺疾病的诊断和治疗至关重要。在核医学中,通常使用经验公式从闪烁扫描图像中估计甲状腺体积。然而,由于闪烁扫描图像缺乏体积信息,基于方程的估计准确性并不完美。为了解决这个问题,本文提出了一种方法,即将 3D 甲状腺统计形状模型(SSM)配准到单视图闪烁扫描图像,以实现更准确的体积估计。SSM 基于分割的 3D CT 图像训练集构建,使用点分布模型对训练对象之间的甲状腺形状变化进行建模。对于甲状腺体积估计,将 SSM 投影到目标患者的闪烁扫描图像上,然后将投影模型形状与患者的闪烁扫描图像进行非刚性配准。生成的 2D 变形文件被反向投影到 3D 空间,以指导 3D SSM 的变形。这个过程反复迭代,直到收敛,最终变形的 SSM 的体积被认为是患者甲状腺体积的估计。为了验证,该方法基于 20 个闪烁扫描图像的测试集进行评估,估计误差为-2.10%±5.20%,远小于基于同一测试集的传统基于方程的方法(35.76%±5.20%)的误差。该方法的稳健性还通过一个具有挑战性的病例进行了进一步测试,即一个具有大甲状腺肿瘤的闪烁扫描图像。对于这种情况,体积估计误差仅为 6.08%。我们的方法显著提高了从闪烁扫描图像中估计甲状腺体积的准确性,这将提高闪烁扫描成像在甲状腺疾病诊断和放射性碘治疗中的价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验