Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitatsstraße 1, 40225, Dusseldorf, Germany.
Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14478, Potsdam, Germany.
Macromol Biosci. 2019 Jun;19(6):e1900033. doi: 10.1002/mabi.201900033. Epub 2019 Apr 12.
Binding of mannose presenting macromolecules to the protein receptor concanavalin A (ConA) is investigated by means of single-molecule atomic force spectroscopy (SMFS) in combination with dynamic light scattering and molecular modeling. Oligomeric (M ≈ 1.5-2.5 kDa) and polymeric (M ≈ 22-30 kDa) glycomacromolecules with controlled number and positioning of mannose units along the scaffolds accessible by combining solid phase synthesis and thiol-ene coupling are used as model systems to assess the molecular mechanisms that contribute to multivalent ConA-mannose complexes. SMFS measurements show increasing dissociation force from monovalent (≈57 pN) to pentavalent oligomers (≈75 pN) suggesting subsite binding to ConA. Polymeric glycomacromolecules with larger hydrodynamic diameters compared to the binding site spacing of ConA exhibit larger dissociation forces (≈80 pN), indicating simultaneous dissociation from multiple ConA binding sites. Nevertheless, although simultaneous dissociation of multiple ligands could be expected for such multivalent systems, predominantly single dissociation events are observed. This is rationalized by strong coiling of the macromolecules' polyamide backbone due to intramolecular hydrogen bonding hindering unfolding of the coil. Therefore, this study shows that the design of glycopolymers for multivalent receptor binding and clustering must consider 3D structure and intramolecular interactions of the scaffold.
通过单分子原子力光谱(SMFS)结合动态光散射和分子建模,研究了甘露糖呈现的大分子与蛋白受体伴刀豆球蛋白 A(ConA)的结合。使用寡糖(M ≈ 1.5-2.5 kDa)和多糖(M ≈ 22-30 kDa)糖基大分子作为模型系统,这些糖基大分子的甘露糖单元数量和位置可通过固相合成和硫醇-烯加成反应进行控制,以评估有助于多价 ConA-甘露糖复合物的分子机制。SMFS 测量显示,从单价(≈57 pN)到五价寡聚物(≈75 pN)的解离力增加,表明与 ConA 的亚基结合。与 ConA 结合位点间距相比,具有较大水动力直径的多糖基大分子表现出更大的解离力(≈80 pN),表明同时从多个 ConA 结合位点解离。然而,尽管对于这样的多价体系可以预期多个配体的同时解离,但主要观察到单个解离事件。这可以通过大分子聚酰胺主链的强烈卷曲来合理化,由于分子内氢键阻碍了线圈的展开。因此,这项研究表明,为多价受体结合和聚类设计糖聚合物时,必须考虑支架的 3D 结构和分子内相互作用。