Suppr超能文献

量化大型神经元群体传递的信息。

Quantifying Information Conveyed by Large Neuronal Populations.

机构信息

Department of Physics, University of California San Diego, San Diego, CA 92093, U.S.A.

Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, and Department of Physics, University of California San Diego, San Diego, CA 92093, U.S.A.

出版信息

Neural Comput. 2019 Jun;31(6):1015-1047. doi: 10.1162/neco_a_01193. Epub 2019 Apr 12.

Abstract

Quantifying mutual information between inputs and outputs of a large neural circuit is an important open problem in both machine learning and neuroscience. However, evaluation of the mutual information is known to be generally intractable for large systems due to the exponential growth in the number of terms that need to be evaluated. Here we show how information contained in the responses of large neural populations can be effectively computed provided the input-output functions of individual neurons can be measured and approximated by a logistic function applied to a potentially nonlinear function of the stimulus. Neural responses in this model can remain sensitive to multiple stimulus components. We show that the mutual information in this model can be effectively approximated as a sum of lower-dimensional conditional mutual information terms. The approximations become exact in the limit of large neural populations and for certain conditions on the distribution of receptive fields across the neural population. We empirically find that these approximations continue to work well even when the conditions on the receptive field distributions are not fulfilled. The computing cost for the proposed methods grows linearly in the dimension of the input and compares favorably with other approximations.

摘要

量化大型神经网络输入和输出之间的互信息是机器学习和神经科学中的一个重要开放性问题。然而,由于需要评估的项数呈指数增长,因此对于大型系统,互信息的评估通常是难以处理的。在这里,我们展示了如何在可以测量单个神经元的输入-输出函数并将其近似为应用于刺激的潜在非线性函数的逻辑函数的情况下,有效地计算大型神经元群体的响应中包含的信息。在该模型中,神经响应仍然对多个刺激分量敏感。我们表明,在该模型中,互信息可以有效地近似为较低维条件互信息项的和。在大型神经元群体的极限和神经元群体中感受野分布的某些条件下,这些近似值是精确的。我们通过经验发现,即使感受野分布的条件不满足,这些近似值仍然可以很好地工作。所提出的方法的计算成本与输入的维度呈线性增长,并优于其他近似值。

相似文献

1
Quantifying Information Conveyed by Large Neuronal Populations.量化大型神经元群体传递的信息。
Neural Comput. 2019 Jun;31(6):1015-1047. doi: 10.1162/neco_a_01193. Epub 2019 Apr 12.
4
Minimal models of multidimensional computations.多维计算的最小模型。
PLoS Comput Biol. 2011 Mar;7(3):e1001111. doi: 10.1371/journal.pcbi.1001111. Epub 2011 Mar 24.
6
Inferring neural circuit structure from datasets of heterogeneous tuning curves.从异质调谐曲线的数据集推断神经回路结构。
PLoS Comput Biol. 2019 Apr 19;15(4):e1006816. doi: 10.1371/journal.pcbi.1006816. eCollection 2019 Apr.
7
Probabilistic Encoding Models for Multivariate Neural Data.概率编码模型在多变量神经数据中的应用。
Front Neural Circuits. 2019 Jan 28;13:1. doi: 10.3389/fncir.2019.00001. eCollection 2019.
9
Exact mean-field models for spiking neural networks with adaptation.具有适应机制的尖峰神经网络的精确平均场模型。
J Comput Neurosci. 2022 Nov;50(4):445-469. doi: 10.1007/s10827-022-00825-9. Epub 2022 Jul 14.

本文引用的文献

3
Optimal population coding by noisy spiking neurons.噪声神经元的最优群体编码。
Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14419-24. doi: 10.1073/pnas.1004906107. Epub 2010 Jul 26.
4
Estimating the amount of information carried by a neuronal population.估计神经元群体所携带的信息量。
Front Comput Neurosci. 2010 Apr 26;4:10. doi: 10.3389/fncom.2010.00010. eCollection 2010.
6
Efficient auditory coding.高效听觉编码
Nature. 2006 Feb 23;439(7079):978-82. doi: 10.1038/nature04485.
8
Sparse coding of sensory inputs.感觉输入的稀疏编码。
Curr Opin Neurobiol. 2004 Aug;14(4):481-7. doi: 10.1016/j.conb.2004.07.007.
9
Entropy and information in neural spike trains: progress on the sampling problem.神经脉冲序列中的熵与信息:采样问题的进展
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 May;69(5 Pt 2):056111. doi: 10.1103/PhysRevE.69.056111. Epub 2004 May 24.
10
Estimating mutual information.估计互信息。
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):066138. doi: 10.1103/PhysRevE.69.066138. Epub 2004 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验