Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607.
Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607
Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):8766-8774. doi: 10.1073/pnas.1820277116. Epub 2019 Apr 12.
Delayed capillary break-up of viscoelastic filaments presents scientific and technical challenges relevant for drop formation, dispensing, and adhesion in industrial and biological applications. The flow kinematics are primarily dictated by the viscoelastic stresses contributed by the polymers that are stretched and oriented in a strong extensional flow field resulting from the streamwise gradients created by the capillarity-driven squeeze flow. After an initial inertiocapillary (IC) or viscocapillary (VC) regime, where elastic effects seem to play no role, the interplay of capillarity and viscoelasticity can lead to an elastocapillary (EC) response characterized by exponentially-slow thinning of neck radius (extensional relaxation time is determined from the delay constant). Less frequently, a terminal visco-elastocapillary (TVEC) response with linear decay in radius can be observed and used for measuring terminal, steady extensional viscosity. However, both IC/VC-EC and EC-TVEC transitions are inaccessible in devices that create stretched necks by applying a step strain to a liquid bridge (e.g., capillary breakup extensional rheometer). In this study, we use dripping-onto-substrate rheometry to obtain radius evolution data for unentangled polymer solutions. We deduce that the plots of transient extensional viscosity vs. Hencky strain (scaled by the respective values at the EC-TVEC transition) emulate the functional form of the birefringence-macromolecular strain relationship based on Peterlin's theory. We quantify the duration and strain between the IC/VC-EC and the EC-TVEC transitions using measures we term elastocapillary span and elastocapillary strain increment and find both measures show values directly correlated with the corresponding variation in extensional relaxation time.
黏弹性细丝的延滞毛细破裂给工业和生物应用中的液滴形成、分配和附着带来了科学和技术挑战。流动动力学主要取决于聚合物的黏弹性应力,这些聚合物在强拉伸流场中被拉伸和定向,该流场是由毛细挤压流产生的流向梯度引起的。在初始惯性毛细(IC)或黏毛细(VC)阶段之后,弹性效应似乎不起作用,毛细作用和黏弹性的相互作用可以导致弹性毛细(EC)响应,其特征是颈半径的指数缓慢变薄(拉伸松弛时间由延迟常数决定)。不太常见的是,可以观察到线性衰减半径的末端黏弹性弹性(TVEC)响应,并用于测量末端、稳态拉伸粘度。然而,在通过向液体桥施加阶跃应变来产生拉伸颈的设备中,IC/VC-EC 和 EC-TVEC 转换都无法实现(例如,毛细分裂拉伸流变仪)。在这项研究中,我们使用滴落基板流变仪获得未缠结聚合物溶液的半径演化数据。我们推断,瞬态拉伸粘度与亨奇应变(按 EC-TVEC 转变时的相应值缩放)的关系图模拟了基于 Peterlin 理论的双折射-大分子应变关系的函数形式。我们使用我们称之为弹性毛细跨度和弹性毛细应变增量的措施来量化 IC/VC-EC 和 EC-TVEC 转变之间的持续时间和应变,并发现这两个措施都显示出与相应的拉伸松弛时间变化直接相关的值。