Suppr超能文献

光致锂原子解吸

Light-induced atomic desorption of lithium.

作者信息

Barker D S, Norrgard E B, Scherschligt J, Fedchak J A, Eckel S

机构信息

Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.

出版信息

Phys Rev A (Coll Park). 2018 Oct;98(4). doi: 10.1103/PhysRevA.98.043412. Epub 2018 Oct 8.

Abstract

We demonstrate loading of a Li magneto-optical trap using light-induced atomic desorption. The magnetooptical trap confines up to approximately 4 × 10 Li atoms with loading rates up to approximately 4 × 10 atoms per second. We study the Li desorption rate as a function of the desorption wavelength and power. The extracted wavelength threshold for desorption of Li from fused silica is approximately 470 nm. In addition to desorption of lithium, we observe light-induced desorption of background gas molecules. The vacuum pressure increase due to the desorbed background molecules is ≲ 50 % and the vacuum pressure decreases back to its base value with characteristic timescales on the order of seconds when we extinguish the desorption light. By examining both the loading and decay curves of the magneto-optical trap, we are able to disentangle the trap decay rates due to background gases and desorbed lithium. Our results show that light-induced atomic desorption can be a viable Li vapor source for compact devices and sensors.

摘要

我们展示了利用光致原子解吸对锂磁光阱进行加载。该磁光阱可俘获多达约4×10⁶个锂原子,加载速率高达约4×10⁶个原子每秒。我们研究了锂的解吸速率与解吸波长及功率的函数关系。从熔融石英中解吸出锂的提取波长阈值约为470纳米。除了锂的解吸,我们还观察到背景气体分子的光致解吸。解吸的背景分子导致的真空压力增加≲50%,当我们熄灭解吸光时,真空压力会在几秒量级的特征时间尺度内恢复到其基值。通过研究磁光阱的加载曲线和衰减曲线,我们能够区分由于背景气体和解吸的锂导致的阱衰减率。我们的结果表明,光致原子解吸对于紧凑型设备和传感器而言可以是一种可行的锂蒸汽源。

相似文献

1
Light-induced atomic desorption of lithium.
Phys Rev A (Coll Park). 2018 Oct;98(4). doi: 10.1103/PhysRevA.98.043412. Epub 2018 Oct 8.
2
Single-beam Zeeman slower and magneto-optical trap using a nanofabricated grating.
Phys Rev Appl. 2019;11(6). doi: 10.1103/physrevapplied.11.064023.
3
Light desorption from an yttrium neutralizer for Rb and Fr magneto-optical trap loading.
J Chem Phys. 2014 Oct 7;141(13):134201. doi: 10.1063/1.4896609.
5
Enhanced Atomic Desorption of 209 and 210 Francium from Organic Coating.
Sci Rep. 2017 Jun 23;7(1):4207. doi: 10.1038/s41598-017-04397-y.
6
7
9
Compact magneto-optical trap of thulium atoms for a transportable optical clock.
Opt Express. 2021 Oct 25;29(22):36734-36744. doi: 10.1364/OE.435105.
10
Multistage two-dimensional magneto-optical trap as a compact cold atom beam source.
Opt Lett. 2006 Mar 15;31(6):682-4. doi: 10.1364/ol.31.000682.

引用本文的文献

1
Single-beam Zeeman slower and magneto-optical trap using a nanofabricated grating.
Phys Rev Appl. 2019;11(6). doi: 10.1103/physrevapplied.11.064023.

本文引用的文献

1
Quantum-based vacuum metrology at NIST.
J Vac Sci Technol A. 2018;36. doi: 10.1116/1.5033568.
2
Vacuum Furnace for Degassing Stainless-Steel Vacuum Components.
J Vac Sci Technol A. 2018 Mar;36(2). doi: 10.1116/1.5016181.
3
Note: A 3D-printed alkali metal dispenser.
Rev Sci Instrum. 2018 May;89(5):056101. doi: 10.1063/1.5023906.
4
Development of a new UHV/XHV pressure standard (Cold Atom Vacuum Standard).
Metrologia. 2017 Dec;54(6):S125-S132. doi: 10.1088/1681-7575/aa8a7b. Epub 2017 Nov 3.
6
Enhanced Atomic Desorption of 209 and 210 Francium from Organic Coating.
Sci Rep. 2017 Jun 23;7(1):4207. doi: 10.1038/s41598-017-04397-y.
7
8
Dual matter-wave inertial sensors in weightlessness.
Nat Commun. 2016 Dec 12;7:13786. doi: 10.1038/ncomms13786.
9
Atom-Chip Fountain Gravimeter.
Phys Rev Lett. 2016 Nov 11;117(20):203003. doi: 10.1103/PhysRevLett.117.203003.
10
Laser controlled atom source for optical clocks.
Sci Rep. 2016 Nov 18;6:37321. doi: 10.1038/srep37321.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验