Cockayne Eric, Shirley Eric L, Ravel Bruce D, Woicik Joseph C
Materials Measurement Science Division, Material Measurement Laboratory,National Institute of Standards and Technology, Gaithersburg, Maryland 20899 USA.
Sensor Science Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 USA.
Phys Rev B. 2018;98. doi: 10.1103/PhysRevB.98.014111.
We study Ti 1s near-edge spectroscopy in PbTiO at various temperatures above and below its tetragonal-to-cubic phase transition, and in SrTiO at room temperature. molecular dynamics (AIMD) runs on 80-atom supercells are used to determine the average internal coordinates and their fluctuations. We determine that one vector local order parameter is the dominant contributor to changes in spectral features: the displacement of the Ti ion with respect to its axial O neighbors in each Cartesian direction, as these displacements enhance the cross section for transitions to E-derived core-hole exciton levels. Using periodic five-atom structures whose relative Ti-O displacements match the root-mean-square values from the AIMD simulations, and core-hole Bethe-Salpeter equation (BSE) calculations, we quantitatively predict the respective Ti 1s near-edge spectra. Properly accounting for atomic fluctuations greatly improves the agreement between theoretical and experimental spectra. The evolution of relative strengths of spectral features vs temperature and electric field polarization vector are captured in considerable detail. This work shows that local structure can be characterized from first-principles sufficiently well to aid both the prediction and the interpretation of near-edge spectra.
我们研究了在四方相到立方相转变温度上下不同温度下的PbTiO以及室温下的SrTiO中的Ti 1s近边光谱。在80原子超胞上进行的分子动力学(AIMD)模拟用于确定平均内部坐标及其涨落。我们确定一个矢量局部序参量是光谱特征变化的主要贡献因素:Ti离子在每个笛卡尔方向上相对于其轴向O近邻的位移,因为这些位移增强了向E衍生的芯空穴激子能级跃迁的截面。使用相对Ti - O位移与AIMD模拟的均方根值匹配的周期性五原子结构,以及芯空穴贝叶斯 - 萨尔皮特方程(BSE)计算,我们定量预测了各自的Ti 1s近边光谱。适当地考虑原子涨落极大地改善了理论光谱与实验光谱之间的一致性。相当详细地捕捉了光谱特征相对强度随温度和电场极化矢量的演变。这项工作表明,从第一性原理出发可以充分很好地表征局部结构,以帮助预测和解释近边光谱。