State Key laboratory for Oncogenes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
BMC Genomics. 2019 Apr 11;20(1):282. doi: 10.1186/s12864-019-5650-0.
In mammals, fine-tuned regulation of gene expression leads to transcription initiation from diverse transcription start sites (TSSs) and multiple core promoters. Although polysome association is a critical step in translation, whether polysome selectively uses TSSs and core promoters and how this could impact translation remains elusive.
In this study, we used CAGE followed by deep sequencing to globally profile the transcript 5' isoforms in the translatome and transcriptome of human HEK293 cells at single-nucleotide resolution. By comparing the two profiles, we identified the 5' isoforms preferentially used in translatome and revealed a widespread selective usage of TSSs (32.0%) and core promoters (48.7%) by polysome. We discovered the transcription initiation patterns and the sequence characteristics that were highly correlated with polysome selection. We further identified 5804 genes significantly enriched or depleted in translatome and showed that polysome selection was an important contributing factor to the abundance of related gene products. Moreover, after comparison with public transcriptome CAGE data from 180 human tissues and primary cells, we raised a question on whether it is a widely adopted mechanism to regulate translation efficiency by changing the transcription initiation sites on the transcription level in cells of different conditions.
Using HEK293 cells as a model, we delineated an indirect selection toward TSSs and core promoters by the translation machinery. Our findings lend additional evidence for a much closer coordination between transcription and translation, warranting future translatome studies in more cell types and conditions to develop a more intricate regulatory model for gene expression.
在哺乳动物中,基因表达的精细调节导致从不同的转录起始位点(TSS)和多个核心启动子起始转录。尽管多核糖体的结合是翻译的关键步骤,但多核糖体是否选择性地使用 TSS 和核心启动子,以及这如何影响翻译仍然难以捉摸。
在这项研究中,我们使用 CAGE 测序技术,以单核苷酸分辨率全局描绘了人 HEK293 细胞翻译组和转录组中转录物 5' 异构体的特征。通过比较这两个图谱,我们确定了在翻译组中优先使用的 5' 异构体,并揭示了多核糖体广泛选择性地使用 TSS(32.0%)和核心启动子(48.7%)。我们发现了与多核糖体选择高度相关的转录起始模式和序列特征。我们进一步鉴定了 5804 个在翻译组中显著富集或耗尽的基因,并表明多核糖体选择是相关基因产物丰度的重要贡献因素。此外,与来自 180 个人类组织和原代细胞的公共转录组 CAGE 数据进行比较后,我们提出了一个问题,即在不同条件下的细胞中,通过改变转录水平上的转录起始位点来调节翻译效率是否是一种广泛采用的机制。
使用 HEK293 细胞作为模型,我们描绘了翻译机制对 TSS 和核心启动子的间接选择。我们的发现为转录和翻译之间更紧密的协调提供了额外的证据,值得在更多的细胞类型和条件下进行更多的翻译组研究,以开发更复杂的基因表达调控模型。