Suppr超能文献

使用 [F]DASA-23 无创性测量丙酮酸激酶 M2 评估多种抗胶质母细胞瘤药物的糖酵解反应。

Evaluation of Glycolytic Response to Multiple Classes of Anti-glioblastoma Drugs by Noninvasive Measurement of Pyruvate Kinase M2 Using [F]DASA-23.

机构信息

Molecular Imaging Program at Stanford, Department of Radiology, James H. Clark Center, Stanford University School of Medicine, 318 Campus Drive, E153, Stanford, CA, 94305, USA.

Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.

出版信息

Mol Imaging Biol. 2020 Feb;22(1):124-133. doi: 10.1007/s11307-019-01353-2.

Abstract

PURPOSE

Pyruvate kinase M2 (PKM2) catalyzes the final step in glycolysis, the key process of tumor metabolism. PKM2 is found in high levels in glioblastoma (GBM) cells with marginal expression within healthy brain tissue, rendering it a key biomarker of GBM metabolic re-programming. Our group has reported the development of a novel radiotracer, 1-((2-fluoro- 6-[F]fluorophenyl)sulfonyl)-4-((4-methoxyphenyl)sulfonyl)piperazine ([F]DASA- 23), to non-invasively detect PKM2 levels with positron emission tomography (PET).

PROCEDURE

U87 human GBM cells were treated with the IC50 concentration of various agents used in the treatment of GBM, including alkylating agents (temozolomide, carmustine, lomustine, procarbazine), inhibitor of topoisomerase I (irinotecan), vascular endothelial and epidermal growth factor receptor inhibitors (cediranib and erlotinib, respectively) anti-metabolite (5-fluorouracil), microtubule inhibitor (vincristine), and metabolic agents (dichloroacetate and IDH1 inhibitor ivosidenib). Following drug exposure for three or 6 days (n = 6 replicates per condition), the radiotracer uptake of [F]DASA-23 and 2-deoxy-2-[F]fluoro-D-glucose ([F]FDG) was assessed. Changes in PKM2 protein levels were determined via Western blot and correlated to radiotracer uptake.

RESULTS

Significant interactions were found between the treatment agent (n = 12 conditions total comprised 11 drugs and vehicle) and the duration of treatment (3- or 6-day exposure to each drug) on the cellular uptake of [F]DASA-23 (p = 0.0001). The greatest change in the cellular uptake of [F]DASA-23 was found after exposure to alkylating agents (p < 0. 0001) followed by irinotecan (p = 0. 0012), erlotinib (p = 0. 02), and 5-fluorouracil (p = 0. 005). Correlation of PKM2 protein levels and [F]DASA-23 cellular uptake revealed a moderate correlation (r = 0.44, p = 0.15).

CONCLUSIONS

These proof of principle studies emphasize the superiority of [F]DASA-23 to [F]FDG in detecting the glycolytic response of GBM to multiple classes of anti-neoplastic drugs in cell culture. A clinical trial evaluating the diagnostic utility of [F]DASA-23 PET in GBM patients (NCT03539731) is ongoing.

摘要

目的

丙酮酸激酶 M2(PKM2)催化糖酵解的最后一步,这是肿瘤代谢的关键过程。PKM2 在胶质母细胞瘤(GBM)细胞中高水平表达,而在健康脑组织中表达水平较低,使其成为 GBM 代谢重编程的关键生物标志物。我们的研究小组已经开发出一种新型放射性示踪剂 1-((2-氟-6-[[F]氟苯基)磺酰基]-4-((4-甲氧基苯基)磺酰基)哌嗪([F]DASA-23),用于通过正电子发射断层扫描 (PET) 非侵入性地检测 PKM2 水平。

过程

用各种用于治疗 GBM 的药物的 IC50 浓度处理 U87 人 GBM 细胞,包括烷化剂(替莫唑胺、卡莫司汀、洛莫司汀、丙卡巴肼)、拓扑异构酶 I 抑制剂(伊立替康)、血管内皮和表皮生长因子受体抑制剂(西地尼布和厄洛替尼,分别)抗代谢物(5-氟尿嘧啶)、微管抑制剂(长春新碱)和代谢物(二氯乙酸和 IDH1 抑制剂ivosidenib)。在药物暴露 3 或 6 天后(每个条件重复 6 次),评估 [F]DASA-23 和 2-脱氧-2-[[F]氟-D-葡萄糖 ([F]FDG) 的放射性示踪剂摄取。通过 Western blot 确定 PKM2 蛋白水平的变化,并与放射性示踪剂摄取相关联。

结果

在 [F]DASA-23 的细胞摄取方面,发现治疗剂(n=12 种共 11 种药物和载体组成的条件)和治疗持续时间(每种药物 3 或 6 天暴露)之间存在显著的相互作用(p=0.0001)。在接受烷化剂(p<0.0001)、伊立替康(p=0.0012)、厄洛替尼(p=0.02)和 5-氟尿嘧啶(p=0.005)治疗后,[F]DASA-23 的细胞摄取变化最大。PKM2 蛋白水平与 [F]DASA-23 细胞摄取的相关性显示出中度相关性(r=0.44,p=0.15)。

结论

这些原理验证研究强调了 [F]DASA-23 优于 [F]FDG 在检测细胞培养中 GBM 对多种抗肿瘤药物的糖酵解反应方面的优越性。正在进行一项评估 [F]DASA-23 PET 在 GBM 患者中的诊断效用的临床试验(NCT03539731)。

相似文献

2
A Clinical PET Imaging Tracer ([F]DASA-23) to Monitor Pyruvate Kinase M2-Induced Glycolytic Reprogramming in Glioblastoma.
Clin Cancer Res. 2021 Dec 1;27(23):6467-6478. doi: 10.1158/1078-0432.CCR-21-0544. Epub 2021 Sep 2.
4
Development of [F]DASA-23 for Imaging Tumor Glycolysis Through Noninvasive Measurement of Pyruvate Kinase M2.
Mol Imaging Biol. 2017 Oct;19(5):665-672. doi: 10.1007/s11307-017-1068-8.
5
The Utility of [F]DASA-23 for Molecular Imaging of Prostate Cancer with Positron Emission Tomography.
Mol Imaging Biol. 2018 Dec;20(6):1015-1024. doi: 10.1007/s11307-018-1194-y.
6
PET imaging of tumor glycolysis downstream of hexokinase through noninvasive measurement of pyruvate kinase M2.
Sci Transl Med. 2015 Oct 21;7(310):310ra169. doi: 10.1126/scitranslmed.aac6117.
7
Human biodistribution and radiation dosimetry of [F]DASA-23, a PET probe targeting pyruvate kinase M2.
Eur J Nucl Med Mol Imaging. 2020 Aug;47(9):2123-2130. doi: 10.1007/s00259-020-04687-0. Epub 2020 Jan 15.
8
N6-isopentenyladenosine inhibits aerobic glycolysis in glioblastoma cells by targeting PKM2 expression and activity.
FEBS Open Bio. 2024 May;14(5):843-854. doi: 10.1002/2211-5463.13766. Epub 2024 Mar 21.
10
A short review on cross-link between pyruvate kinase (PKM2) and Glioblastoma Multiforme.
Metab Brain Dis. 2021 Jun;36(5):751-765. doi: 10.1007/s11011-021-00690-y. Epub 2021 Mar 2.

引用本文的文献

2
Enhancing glioblastoma treatment through the integration of tumor-treating fields.
Front Oncol. 2023 Oct 17;13:1274587. doi: 10.3389/fonc.2023.1274587. eCollection 2023.
3
Imaging glucose metabolism to reveal tumor progression.
Front Physiol. 2023 Feb 2;14:1103354. doi: 10.3389/fphys.2023.1103354. eCollection 2023.
4
Multimodal imaging of capsid and cargo reveals differential brain targeting and liver detargeting of systemically-administered AAVs.
Biomaterials. 2022 Sep;288:121701. doi: 10.1016/j.biomaterials.2022.121701. Epub 2022 Aug 6.
5
Glioma Stem-Like Cells and Metabolism: Potential for Novel Therapeutic Strategies.
Front Oncol. 2021 Aug 31;11:743814. doi: 10.3389/fonc.2021.743814. eCollection 2021.
6
A Clinical PET Imaging Tracer ([F]DASA-23) to Monitor Pyruvate Kinase M2-Induced Glycolytic Reprogramming in Glioblastoma.
Clin Cancer Res. 2021 Dec 1;27(23):6467-6478. doi: 10.1158/1078-0432.CCR-21-0544. Epub 2021 Sep 2.

本文引用的文献

4
Development of [F]DASA-23 for Imaging Tumor Glycolysis Through Noninvasive Measurement of Pyruvate Kinase M2.
Mol Imaging Biol. 2017 Oct;19(5):665-672. doi: 10.1007/s11307-017-1068-8.
5
Modified Criteria for Radiographic Response Assessment in Glioblastoma Clinical Trials.
Neurotherapeutics. 2017 Apr;14(2):307-320. doi: 10.1007/s13311-016-0507-6.
6
Non-invasive metabolic imaging of brain tumours in the era of precision medicine.
Nat Rev Clin Oncol. 2016 Dec;13(12):725-739. doi: 10.1038/nrclinonc.2016.108. Epub 2016 Jul 19.
8
Recurrent Glioblastoma: Where we stand.
South Asian J Cancer. 2015 Oct-Dec;4(4):163-73. doi: 10.4103/2278-330X.175953.
10
The Warburg Effect: How Does it Benefit Cancer Cells?
Trends Biochem Sci. 2016 Mar;41(3):211-218. doi: 10.1016/j.tibs.2015.12.001. Epub 2016 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验