Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
Angew Chem Int Ed Engl. 2019 Jun 11;58(24):8151-8155. doi: 10.1002/anie.201903808. Epub 2019 May 8.
Phosphorylation of (pre)biotically relevant molecules in aqueous medium has recently been demonstrated using water-soluble diamidophosphate (DAP). Questions arise relating to the prebiotic availability of DAP and other amidophosphosphorus species on the early earth. Herein, we demonstrate that DAP and other amino-derivatives of phosphates/phosphite are generated when Fe P (proxy for mineral schreibersite), condensed phosphates, and reduced oxidation state phosphorus compounds, which could have been available on early earth, are exposed to aqueous ammonia solutions. DAP is shown to remain in aqueous solution under conditions where phosphate is precipitated out by divalent metals. These results show that nitrogenated analogues of phosphate and reduced phosphite species can be produced and remain in solution, overcoming the thermodynamic barrier for phosphorylation in water, increasing the possibility that abiotic phosphorylation reactions occurred in aqueous environments on early earth.
最近,人们已经使用水溶性双磷酸二酰胺(DAP)在水介质中对(前)生物相关分子的磷酸化进行了研究。由此产生了一些问题,涉及到在早期地球上 DAP 和其他 amidophosphosphorus 物质的前生物可用性。本文中,我们证明了当 Fe P(矿化 schreibersite 的代表)、浓缩磷酸盐和还原态磷化合物这些在早期地球上可能存在的物质暴露于氨水溶液中时,会生成 DAP 和其他磷酸盐/亚磷酸盐的氨基酸衍生物。当二价金属沉淀出磷酸盐时,DAP 被证明能在水溶液中保持稳定。这些结果表明,磷酸盐和还原亚磷酸盐的含氮类似物可以被生成并保持在溶液中,克服了水相磷酸化反应的热力学障碍,增加了在早期地球上的水相环境中发生非生物磷酸化反应的可能性。