Suppr超能文献

《深度学习革命中的年龄估计》。

Age from Faces in the Deep Learning Revolution.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2020 Sep;42(9):2113-2132. doi: 10.1109/TPAMI.2019.2910522. Epub 2019 Apr 11.

Abstract

Face analysis includes a variety of specific problems as face detection, person identification, gender and ethnicity recognition, just to name the most common ones; in the last two decades, significant research efforts have been devoted to the challenging task of age estimation from faces, as witnessed by the high number of published papers. The explosion of the deep learning paradigm, that is determining a spectacular increasing of the performance, is in the public eye; consequently, the number of approaches based on deep learning is impressively growing and this also happened for age estimation. The exciting results obtained have been recently surveyed on almost all the specific face analysis problems; the only exception stands for age estimation, whose last survey dates back to 2010 and does not include any deep learning based approach to the problem. This paper provides an analysis of the deep methods proposed in the last six years; these are analysed from different points of view: the network architecture together with the learning procedure, the used datasets, data preprocessing and augmentation, and the exploitation of additional data coming from gender, race and face expression. The review is completed by discussing the results obtained on public datasets, so as the impact of different aspects on system performance, together with still open issues.

摘要

面部分析包括各种特定的问题,如面部检测、人员识别、性别和种族识别,仅举最常见的几个例子;在过去的二十年中,人们投入了大量的研究努力来解决从面部估计年龄的具有挑战性的任务,这从发表的大量论文中可见一斑。深度学习范式的爆炸式发展,即性能的显著提高,引起了公众的关注;因此,基于深度学习的方法数量令人印象深刻地增长,这也发生在年龄估计上。最近几乎所有特定的面部分析问题都对令人兴奋的结果进行了调查;唯一的例外是年龄估计,其最新的调查可以追溯到 2010 年,并且不包括任何基于深度学习的方法。本文对过去六年提出的深度学习方法进行了分析;从不同的角度分析了这些方法:网络架构和学习过程、使用的数据集、数据预处理和扩充,以及利用来自性别、种族和面部表情的额外数据。通过讨论在公共数据集上获得的结果,以及不同方面对系统性能的影响,以及仍然存在的问题,对结果进行了讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验