Suppr超能文献

基于深度学习和并行性的利用感兴趣活动区域的面部表情识别

Facial expression recognition based on active region of interest using deep learning and parallelism.

作者信息

Hossain Mohammad Alamgir, Assiri Basem

机构信息

Department of COMPUTER SCIENCE, College of Computer Science & Information Technology, Jazan University, Jazan, Kingdom of Saudi Arabia.

出版信息

PeerJ Comput Sci. 2022 Mar 2;8:e894. doi: 10.7717/peerj-cs.894. eCollection 2022.

Abstract

The automatic facial expression tracking method has become an emergent topic during the last few decades. It is a challenging problem that impacts many fields such as virtual reality, security surveillance, driver safety, homeland security, human-computer interaction, medical applications. A remarkable cost-efficiency can be achieved by considering some areas of a face. These areas are termed Active Regions of Interest (AROIs). This work proposes a facial expression recognition framework that investigates five types of facial expressions, namely neutral, happiness, fear, surprise, and disgust. Firstly, a pose estimation method is incorporated and to go along with an approach to rotate the face to achieve a normalized pose. Secondly, the whole face-image is segmented into four classes and eight regions. Thirdly, only four AROIs are identified from the segmented regions. The four AROIs are the nose-tip, right eye, left eye, and lips respectively. Fourthly, an info-image-data-mask database is maintained for classification and it is used to store records of images. This database is the mixture of all the images that are gained after introducing a ten-fold cross-validation technique using the Convolutional Neural Network. Correlations of variances and standard deviations are computed based on identified images. To minimize the required processing time in both training and testing the data set, a parallelism technique is introduced, in which each region of the AROIs is classified individually and all of them run in parallel. Fifthly, a decision-tree-level synthesis-based framework is proposed to coordinate the results of parallel classification, which helps to improve the recognition accuracy. Finally, experimentation on both independent and synthesis databases is voted for calculating the performance of the proposed technique. By incorporating the proposed synthesis method, we gain 94.499%, 95.439%, and 98.26% accuracy with the CK+ image sets and 92.463%, 93.318%, and 94.423% with the JAFFE image sets. The overall accuracy is 95.27% in recognition. We gain 2.8% higher accuracy by introducing a decision-level synthesis method. Moreover, with the incorporation of parallelism, processing time speeds up three times faster. This accuracy proves the robustness of the proposed scheme.

摘要

在过去几十年中,自动面部表情跟踪方法已成为一个新兴课题。这是一个具有挑战性的问题,影响着许多领域,如虚拟现实、安全监控、驾驶员安全、国土安全、人机交互、医学应用等。通过考虑面部的某些区域,可以实现显著的成本效益。这些区域被称为主动兴趣区域(AROIs)。这项工作提出了一个面部表情识别框架,该框架研究五种面部表情,即中性、快乐、恐惧、惊讶和厌恶。首先,引入一种姿态估计方法,并采用一种旋转面部的方法来实现归一化姿态。其次,将整个面部图像分割为四类和八个区域。第三,仅从分割区域中识别出四个主动兴趣区域。这四个主动兴趣区域分别是鼻尖、右眼、左眼和嘴唇。第四,维护一个信息图像数据掩码数据库用于分类,并用于存储图像记录。该数据库是使用卷积神经网络引入十折交叉验证技术后获得的所有图像的混合。基于识别出的图像计算方差和标准差的相关性。为了最小化训练和测试数据集所需的处理时间,引入了一种并行技术,其中主动兴趣区域的每个区域单独分类,所有区域并行运行。第五,提出了一种基于决策树级合成的框架来协调并行分类的结果,这有助于提高识别准确率。最后,对独立数据库和合成数据库进行实验,以评估所提出技术的性能。通过采用所提出的合成方法,在CK+图像集上的准确率分别为94.499%、95.439%和98.26%,在JAFFE图像集上的准确率分别为92.463%、93.318%和94.423%。总体识别准确率为95.27%。通过引入决策级合成方法,准确率提高了2.8%。此外,通过采用并行技术,处理时间加快了三倍。这一准确率证明了所提方案的鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d45/9044208/d34e1828fb99/peerj-cs-08-894-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验