Suppr超能文献

一类可分离非线性模型的术语选择

Term Selection for a Class of Separable Nonlinear Models.

作者信息

Gan Min, Chen Guang-Yong, Chen Long, Chen C L Philip

出版信息

IEEE Trans Neural Netw Learn Syst. 2020 Feb;31(2):445-451. doi: 10.1109/TNNLS.2019.2904952. Epub 2019 Apr 11.

Abstract

In this paper, we consider the term selection problem for a class of separable nonlinear models. The strategy is a two-step process in which the nonlinear parameters of the model are first optimized by a variable projection method, and then the least absolute shrinkage and selection operator are adopted to obtain a sparse solution by picking out the critical terms automatically. This process may be repeated several times. The proposed algorithm is tested on parameter estimation problems for an exponential model and a neural network-based model. The numerical results show that the proposed algorithm can pick out the appropriate terms from the overparameterized model and the obtained parsimonious model performs better than other methods.

摘要

在本文中,我们考虑一类可分离非线性模型的项选择问题。该策略是一个两步过程,其中首先通过变量投影法对模型的非线性参数进行优化,然后采用最小绝对收缩和选择算子通过自动挑选关键项来获得稀疏解。此过程可能会重复几次。所提出的算法在指数模型和基于神经网络的模型的参数估计问题上进行了测试。数值结果表明,所提出的算法能够从参数过多的模型中挑选出合适的项,并且所得到的简约模型比其他方法表现更好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验