Suppr超能文献

自动手部骨骼形状从射线照片估计。

Automatic Hand Skeletal Shape Estimation From Radiographs.

出版信息

IEEE Trans Nanobioscience. 2019 Jul;18(3):296-305. doi: 10.1109/TNB.2019.2911026. Epub 2019 Apr 12.

Abstract

Rheumatoid arthritis (RA) is an autoimmune disease whose common manifestation involves the slow destruction of joint tissue, a damage that is visible in a radiograph. Over time, this damage causes pain and loss of functioning, which depends, to some extent, on the spatial deformation induced by the joint damage. Building an accurate model of the current deformation and predicting potential future deformations are the important components of treatment planning. Unfortunately, this is currently a time-consuming and labor-intensive manual process. To address this problem, we propose a fully automated approach for fitting a shape model to the long bones of the hand from a single radiograph. Critically, our shape model allows sufficient flexibility to be useful for patients in various stages of RA. Our approach uses a deep convolutional neural network to extract low-level features and a conditional random field (CRF) to support shape inference. Our approach is significantly more accurate than previous work that used hand-engineered features. We provide a comprehensive evaluation for various choices of network hyperparameters, as current best practices lack significantly in this domain. We evaluate the accuracy of our pipeline on two large datasets of hand radiographs and highlight the importance of the low-level features, the relative contribution of different potential functions in the CRF, and the accuracy of the final shape estimates. Our approach is nearly as accurate as a trained radiologist and, because it only requires a few seconds per radiograph, can be applied to large datasets to enable better modeling of disease progression.

摘要

类风湿性关节炎(RA)是一种自身免疫性疾病,其常见表现为关节组织的缓慢破坏,这种破坏在 X 光片上可见。随着时间的推移,这种损伤会导致疼痛和功能丧失,而这种丧失在一定程度上取决于关节损伤引起的空间变形。建立当前变形的精确模型并预测潜在的未来变形是治疗计划的重要组成部分。不幸的是,这目前是一个耗时且劳动密集的手动过程。为了解决这个问题,我们提出了一种从单张 X 光片中对手的长骨进行形状模型拟合的全自动方法。关键是,我们的形状模型具有足够的灵活性,可用于处于 RA 不同阶段的患者。我们的方法使用深度卷积神经网络提取低级特征,并使用条件随机场(CRF)来支持形状推断。与以前使用手工特征的工作相比,我们的方法准确性显著提高。我们针对网络超参数的各种选择提供了全面的评估,因为目前在这一领域缺乏最佳实践。我们在两个大型手部 X 光数据集上评估了我们的管道的准确性,并强调了低级特征的重要性、CRF 中不同潜在函数的相对贡献以及最终形状估计的准确性。我们的方法与经过训练的放射科医生一样准确,并且由于它每幅 X 光片仅需要几秒钟的时间,因此可以应用于大型数据集,以更好地模拟疾病进展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验