School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P.R. China.
School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P.R. China.
Analyst. 2019 May 21;144(10):3389-3397. doi: 10.1039/c9an00316a. Epub 2019 Apr 16.
DNA can be configured into unique high-order structures due to its significantly high programmability, such as a three-way junction-based structure (denoted Y-shaped DNA), for further applications. Herein, we report a label-free fluorescent signal-on biosensor based on the target-driven primer remodeling rolling circle amplification (RCA)-activated multisite-catalytic hairpin assembly (CHA) enabling the concurrent formation of Y-shaped DNA nanotorches (Y-DNTs) for ultrasensitive detection of ochratoxin A (OTA). Two kinds of masterfully-designed probes, termed Complex I and II, were pre-prepared by the combination of a circular template (CT) with an OTA aptamer (S1), a substrate probe (S2) and hairpin probe 1 (HP1), respectively. Target OTA specifically binds to Complex I, resulting in the release of the remnant element in S2 and successive remodeling into a mature primer for RCA by phi29 DNA polymerase, thus a usable primer-CT complex is produced, which actuates primary RCA. Then, numerous Complex II probes can anneal with the first-generation RCA product (RP) with multiple sites to activate the CHA process. With the participation of endonuclease IV (Endo IV) and phi29, HP1 as a pre-primer containing a tetrahydrofuran abasic site mimic (AP site) in Complex II is converted into a mature primer to initiate additional rounds of RCA. So, countless Y-DNTs are formed concurrently containing a G-quadruplex structure that enables the N-methylmesoporphyrin IX (NMM) to be embedded, generating remarkably strong fluorescence signals. The biosensor was demonstrated to enable rapid and accurate highly efficient and selective detection of OTA with an improved detection limit of as low as 0.0002 ng mL and a widened dynamic range of over 4 orders of magnitude. Meanwhile, this method was proven to be capable of being used to analyze actual samples. Therefore, this proposed strategy may be established as a useful and practical platform for the ultrasensitive detection of mycotoxins in food safety testing.
由于其高度可编程性,DNA 可以配置为独特的高级结构,例如基于三链结的结构(表示为 Y 形 DNA),用于进一步的应用。在此,我们报告了一种基于无标记荧光信号开启的生物传感器,该传感器基于目标驱动的引物重构滚环扩增(RCA)激活多部位催化发夹组装(CHA),能够同时形成 Y 形 DNA 纳米叉(Y-DNTs),用于超灵敏检测赭曲霉毒素 A(OTA)。两种精心设计的探针,分别称为复合物 I 和 II,通过环形模板(CT)与 OTA 适体(S1)、底物探针(S2)和发夹探针 1(HP1)的组合预先制备。靶标 OTA 特异性结合复合物 I,导致 S2 中的剩余元素释放,并通过 phi29 DNA 聚合酶连续重构为成熟引物用于 RCA,从而产生可用的引物-CT 复合物,启动初级 RCA。然后,大量的复合物 II 探针可以与第一代 RCA 产物(RP)在多个位点退火,激活 CHA 过程。随着内切核酸酶 IV(Endo IV)和 phi29 的参与,HP1 作为复合物 II 中的预引物,含有四氢呋喃无碱基位点模拟物(AP 位点),被转化为成熟引物,启动额外的 RCA 循环。因此,同时形成无数包含 G-四链体结构的 Y-DNTs,使 N-甲基mesoporphyrin IX(NMM)能够嵌入,产生显著增强的荧光信号。该生物传感器被证明能够快速、准确、高效、选择性地检测 OTA,检测限低至 0.0002ng mL,动态范围宽达 4 个数量级以上。同时,该方法被证明能够用于分析实际样品。因此,该策略可能被建立为食品安全检测中用于超灵敏检测真菌毒素的有用且实用的平台。