Ren Jian, Kong Weijia, Ni Jiaming
School of Computer Science and Technology, Huaiyin Normal University, Chang Jiang West Road 111, Huaian, 223300, Jiangsu, China.
Department of Chemistry, Beijing Normal University, No.19, Waidajie, Xinjiekou, Haidian District, Beijing, 100875, China.
Nanoscale Res Lett. 2019 Apr 16;14(1):133. doi: 10.1186/s11671-019-2972-4.
Different atmospheric gas molecules (e.g., N, O, CO, HO, CO, NO, NO, NH, and SO) are absorbed on the pristine hexagonal boron arsenide (BAs) through density functional theory calculations. For each gas molecules, various adsorption positions were considered. The most stable adsorption depended on position, adsorption energy, charge transfer, and work function. SO gas molecules had the best adsorption energy, the shortest distance for BAs surface in the atmospheric gas molecule, and a certain amount of charge transfer. The calculation of work function was important for exploring the possibilities of adjusting the electronic and optical properties. Our results presented BAs materials can be the potential gas sensor of SO with high sensitivity and selectivity.
通过密度泛函理论计算,不同的大气气体分子(如N、O、CO、HO、CO、NO、NO、NH和SO)被吸附在原始六方砷化硼(BAs)上。对于每个气体分子,考虑了各种吸附位置。最稳定的吸附取决于位置、吸附能、电荷转移和功函数。SO气体分子具有最佳的吸附能,在大气气体分子中与BAs表面的距离最短,并且有一定量的电荷转移。功函数的计算对于探索调节电子和光学性质的可能性很重要。我们的结果表明,BAs材料可以成为具有高灵敏度和选择性的潜在SO气体传感器。