Zhang Jin, Guan Mengxue, Lischner Johannes, Meng Sheng, Prezhdo Oleg V
Departments of Materials and Physics and the Thomas Young Centre for Theory and Simulation of Materials , Imperial College London , London SW7 2AZ , United Kingdom.
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , P.R. China.
Nano Lett. 2019 May 8;19(5):3187-3193. doi: 10.1021/acs.nanolett.9b00647. Epub 2019 Apr 22.
Hot-carrier dynamics at the interfaces of semiconductors and nanoclusters is of significant importance for photovoltaic and photocatalytic applications. Plasmon-driven charge separation processes are considered to be only dependent on the type of donor-acceptor interactions, that is, the conventional hot-electron-transfer mechanism for van der Waals interactions and the plasmon-induced interfacial charge-transfer transition mechanism for chemical bonds. Here, we demonstrate that the two mechanisms can coexist in a nanoparticle-semiconductor hybrid nanomaterial, both leading to faster transfer than carrier relaxation. The origin of the two mechanisms is attributed to the spatial polarization of the excited hot carriers, where the longitudinal state couples to semiconductors more strongly than the transverse state. Our findings provide a new insight into the photoinduced carrier dynamics, which is relevant for many applications in solar energy conversion, including efficient water splitting, photocatalysis, and photovoltaics.
半导体与纳米团簇界面处的热载流子动力学对于光伏和光催化应用具有重要意义。等离子体激元驱动的电荷分离过程被认为仅取决于供体 - 受体相互作用的类型,即范德华相互作用的传统热电子转移机制和化学键的等离子体激元诱导界面电荷转移跃迁机制。在此,我们证明这两种机制可以在纳米颗粒 - 半导体混合纳米材料中共存,两者都导致比载流子弛豫更快的转移。这两种机制的起源归因于激发热载流子的空间极化,其中纵向态比横向态与半导体的耦合更强。我们的发现为光致载流子动力学提供了新的见解,这与太阳能转换中的许多应用相关,包括高效水分解、光催化和光伏。