Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, 13083-887, Campinas, SP, Brazil; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Robertson Trust Wing Building, Room 601, 161 Cathedral Street, G4 0RE, Glasgow, UK.
Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, 13083-887, Campinas, SP, Brazil.
Neuropharmacology. 2019 Jul 15;153:41-52. doi: 10.1016/j.neuropharm.2019.04.013. Epub 2019 Apr 14.
Scorpionism is frequently accompanied by a massive release of catecholamines and acetylcholine from peripheral nerves caused by neurotoxic peptides present in these venoms, which have high specificity and affinity for ion channels. Tityus bahiensis is the second most medically important scorpion species in Brazil but, despite this, its venom remains scarcely studied, especially with regard to its pharmacology on the peripheral (somatic and autonomic) nervous system. Here, we evaluated the activity of T. bahiensis venom on somatic neurotransmission using myographic (chick and mouse neuromuscular preparations), electrophysiological (MEPP, EPP, resting membrane potentials, perineural waveforms, compound action potentials) and calcium imaging (on DRG neurons and muscle fibres) techniques. Our results show that the major toxic effects of T. bahiensis venom on neuromuscular function are presynaptically driven by the increase in evoked and spontaneous neurotransmitter release. Low venom concentrations prolong the axonal action potential, leading to a longer depolarization of the nerve terminals that enhances neurotransmitter release and facilitates nerve-evoked muscle contraction. The venom also stimulates the spontaneous release of neurotransmitters, probably through partial neuronal depolarization that allows calcium influx. Higher venom concentrations block the generation of action potentials and resulting muscle twitches. These effects of the venom were reversed by low concentrations of TTX, indicating voltage-gated sodium channels as the primary target of the venom toxins. These results suggest that the major neuromuscular toxicity of T. bahiensis venom is probably mediated mainly by α- and β-toxins interacting with presynaptic TTX-sensitive ion channels on both axons and nerve terminals.
蝎螫伤常伴有外周神经中儿茶酚胺和乙酰胆碱的大量释放,这是由这些毒液中的神经毒性肽引起的,这些肽对离子通道具有高特异性和亲和力。巴西第二重要的医学蝎子物种是 Tityus bahiensis,但尽管如此,其毒液仍很少被研究,尤其是在其对周围(躯体和自主)神经系统的药理学方面。在这里,我们使用肌电图(鸡和鼠的神经肌肉标本)、电生理学(MEPP、EPP、静息膜电位、神经周围波形、复合动作电位)和钙成像(DRG 神经元和肌肉纤维)技术评估了 T. bahiensis 毒液对躯体神经传递的活性。我们的结果表明,T. bahiensis 毒液对神经肌肉功能的主要毒性作用是由诱发和自发神经递质释放的增加引起的。低浓度的毒液延长了轴突动作电位,导致神经末梢更长时间的去极化,从而增强神经递质的释放并促进神经诱发的肌肉收缩。毒液还刺激神经递质的自发释放,可能是通过部分神经元去极化,允许钙离子内流。较高的毒液浓度会阻止动作电位的产生和随之而来的肌肉抽搐。毒液的这些作用被低浓度的 TTX 逆转,表明电压门控钠离子通道是毒液毒素的主要靶标。这些结果表明,T. bahiensis 毒液的主要神经肌肉毒性可能主要是由与轴突和神经末梢上的 TTX 敏感离子通道相互作用的 α-和 β-毒素介导的。