Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.
Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
Cell Rep. 2019 Apr 16;27(3):971-986.e9. doi: 10.1016/j.celrep.2019.03.047.
Glioblastoma therapies have remained elusive due to limitations in understanding mechanisms of growth and survival of the tumorigenic population. Using CRISPR-Cas9 approaches in patient-derived GBM stem cells (GSCs) to interrogate function of the coding genome, we identify actionable pathways responsible for growth, which reveal the gene-essential circuitry of GBM stemness and proliferation. In particular, we characterize members of the SOX transcription factor family, SOCS3, USP8, and DOT1L, and protein ufmylation as important for GSC growth. Additionally, we reveal mechanisms of temozolomide resistance that could lead to combination strategies. By reaching beyond static genome analysis of bulk tumors, with a genome-wide functional approach, we reveal genetic dependencies within a broad range of biological processes to provide increased understanding of GBM growth and treatment resistance.
由于对致瘤群体生长和存活机制的理解有限,胶质母细胞瘤的治疗方法一直难以捉摸。我们使用 CRISPR-Cas9 方法在患者来源的胶质母细胞瘤干细胞(GSCs)中研究编码基因组的功能,以确定负责生长的可操作途径,从而揭示 GBM 干性和增殖的基因必需电路。特别是,我们研究了 SOX 转录因子家族、SOCS3、USP8 和 DOT1L 以及蛋白质 ufmylation 的成员,这些对于 GSC 的生长很重要。此外,我们揭示了替莫唑胺耐药的机制,这可能导致联合治疗策略。通过超越对大块肿瘤的静态基因组分析,采用全基因组功能方法,我们揭示了广泛的生物学过程中的遗传依赖性,从而增加了对 GBM 生长和治疗耐药性的理解。