Suppr超能文献

离子液体在多孔二氧化硅中的压力依赖性限制效应

Pressure-Dependent Confinement Effect of Ionic Liquids in Porous Silica.

作者信息

Wang Teng-Hui, Lin En-Yu, Chang Hai-Chou

机构信息

Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan.

出版信息

Nanomaterials (Basel). 2019 Apr 16;9(4):620. doi: 10.3390/nano9040620.

Abstract

The effect of confining ionic liquids (ILs) such as 1-ethyl-3-methylimidazolium tetrafluoroborate [CCIm][BF] or 1-butyl-3-methylimidazolium tetrafluoroborate [CCIm][BF] in silica matrices was investigated by high-pressure IR spectroscopy. The samples were prepared via the sol-gel method, and the pressure-dependent changes in the C-H absorption bands were investigated. No appreciable changes were observed in the spectral features when the ILs were confined in silica matrices under ambient pressure. That is, the infrared measurements obtained under ambient pressure were not sufficient to detect the interfacial interactions between the ILs and the porous silica. However, dramatic differences were observed in the spectral features of [CCIm][BF] and [CCIm][BF] in silica matrices under the conditions of high pressures. The surfaces of porous silica appeared to weaken the cation-anion interactions caused by pressure-enhanced interfacial IL-silica interactions. This confinement effect under high pressures was less obvious for [CCIm][BF]. The size of the cations appeared to play a prominent role in the IL-silica systems.

摘要

通过高压红外光谱研究了将离子液体(ILs)如1-乙基-3-甲基咪唑四氟硼酸盐[CCIm][BF]或1-丁基-3-甲基咪唑四氟硼酸盐[CCIm][BF]限制在二氧化硅基质中的效果。样品通过溶胶-凝胶法制备,并研究了C-H吸收带随压力的变化。当离子液体在常压下限制在二氧化硅基质中时,光谱特征未观察到明显变化。也就是说,在常压下获得的红外测量不足以检测离子液体与多孔二氧化硅之间的界面相互作用。然而,在高压条件下,[CCIm][BF]和[CCIm][BF]在二氧化硅基质中的光谱特征出现了显著差异。多孔二氧化硅的表面似乎削弱了由压力增强的界面离子液体-二氧化硅相互作用引起的阳离子-阴离子相互作用。对于[CCIm][BF],这种高压下的限制效应不太明显。阳离子的大小似乎在离子液体-二氧化硅体系中起重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe29/6523140/9ecef1c9efea/nanomaterials-09-00620-g001.jpg

相似文献

1
Pressure-Dependent Confinement Effect of Ionic Liquids in Porous Silica.
Nanomaterials (Basel). 2019 Apr 16;9(4):620. doi: 10.3390/nano9040620.
3
Imidazolium Ionic Liquids as Designer Solvents Confined in Silica Nanopores.
Gels. 2022 Jun 19;8(6):388. doi: 10.3390/gels8060388.
6
A density functional theory study on the interactions between dibenzothiophene and tetrafluoroborate-based ionic liquids.
J Mol Model. 2017 Apr;23(4):145. doi: 10.1007/s00894-017-3310-3. Epub 2017 Mar 31.
7
Abnormal FT-IR and FTRaman spectra of ionic liquids confined in nano-porous silica gel.
Spectrochim Acta A Mol Biomol Spectrosc. 2005 Nov;62(1-3):239-44. doi: 10.1016/j.saa.2004.12.031.
8
Gas-Phase Binding Energies and Dissociation Dynamics of 1-Alkyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquid Clusters.
J Phys Chem A. 2020 Dec 10;124(49):10181-10198. doi: 10.1021/acs.jpca.0c06297. Epub 2020 Nov 24.
10
Lignin dissolution in dialkylimidazolium-based ionic liquid-water mixtures.
Bioresour Technol. 2014 Oct;170:499-505. doi: 10.1016/j.biortech.2014.08.020. Epub 2014 Aug 10.

本文引用的文献

2
Inorganic/Organic Double-Network Ion Gels with Partially Developed Silica-Particle Network.
Langmuir. 2018 Sep 11;34(36):10622-10633. doi: 10.1021/acs.langmuir.8b01930. Epub 2018 Aug 29.
3
Gelled Electrolyte Containing Phosphonium Ionic Liquids for Lithium-Ion Batteries.
Nanomaterials (Basel). 2018 Jun 14;8(6):435. doi: 10.3390/nano8060435.
5
Porous Polyelectrolytes: The Interplay of Charge and Pores for New Functionalities.
Angew Chem Int Ed Engl. 2018 Jun 4;57(23):6754-6773. doi: 10.1002/anie.201710272. Epub 2018 Apr 26.
7
Interactions of ionic liquids and surfaces of graphene related nanoparticles under high pressures.
Phys Chem Chem Phys. 2017 May 17;19(19):12269-12275. doi: 10.1039/c7cp00978j.
8
Nanoconfined Ionic Liquids.
Chem Rev. 2017 May 24;117(10):6755-6833. doi: 10.1021/acs.chemrev.6b00509. Epub 2016 Dec 29.
9
Aqueous Solutions of Ionic Liquids: Microscopic Assembly.
Chemphyschem. 2016 Feb 3;17(3):380-6. doi: 10.1002/cphc.201501022. Epub 2015 Dec 17.
10
The effect of pressure on cation-cellulose interactions in cellulose/ionic liquid mixtures.
Phys Chem Chem Phys. 2015 Nov 7;17(41):27573-8. doi: 10.1039/c5cp04607f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验