Wang Teng-Hui, Wang Wei-Xiang, Chang Hai-Chou
Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan.
Nanomaterials (Basel). 2021 Aug 18;11(8):2099. doi: 10.3390/nano11082099.
The nanostructures of ionic liquids (ILs) have been the focus of considerable research attention in recent years. Nevertheless, the nanoscale structures of ILs in the presence of polymers have not been described in detail at present. In this study, nanostructures of ILs disturbed by poly(vinylidene fluoride) (PVdF) were investigated via high-pressure infrared spectra. For 1-(2-hydroxyethyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([HEMIm][TFSI])-PVdF mixtures, non-monotonic frequency shifts of the C-H vibrations upon dilution were observed under ambient pressure. The experimental results suggest the presence of microheterogeneity in the [HEMIm][TFSI] systems. Upon compression, PVdF further influenced the local structure of C-H via pressure-enhanced IL-PVdF interactions; however, the local structures of C-H and hydrogen-bonded O-H were not affected by PVdF under high pressures. For choline [TFSI]-PVdF mixtures, PVdF may disturb the local structures of hydrogen-bonded O-H. In the absence of the C-H⋯anion and C-H⋯anion in choline [TFSI]-PVdF mixtures, the O-H group becomes a favorable moiety for pressure-enhanced IL-PVdF interactions. Our results indicate the potential of high-pressure application for designing pressure-dependent electronic switches based on the possible changes in the microheterogeneity and electrical conductivity in IL-PVdF systems under various pressures.
近年来,离子液体(ILs)的纳米结构一直是大量研究关注的焦点。然而,目前聚合物存在下ILs的纳米级结构尚未得到详细描述。在本研究中,通过高压红外光谱研究了聚偏氟乙烯(PVdF)干扰下ILs的纳米结构。对于1-(2-羟乙基)-3-甲基咪唑双(三氟甲磺酰)亚胺([HEMIm][TFSI])-PVdF混合物,在环境压力下观察到稀释时C-H振动的非单调频率位移。实验结果表明[HEMIm][TFSI]体系中存在微观不均匀性。压缩时,PVdF通过压力增强的IL-PVdF相互作用进一步影响C-H的局部结构;然而,在高压下,C-H和氢键合O-H的局部结构不受PVdF影响。对于胆碱[三氟甲磺酰]亚胺(choline [TFSI])-PVdF混合物,PVdF可能会干扰氢键合O-H的局部结构。在胆碱[TFSI]-PVdF混合物中不存在C-H⋯阴离子和C-H⋯阴离子的情况下,O-H基团成为压力增强的IL-PVdF相互作用的有利部分。我们的结果表明,基于IL-PVdF体系在不同压力下微观不均匀性和电导率的可能变化,高压应用在设计压力依赖型电子开关方面具有潜力。