Suppr超能文献

在 RNA 3D 结构评估中构建统计势时,最佳的参考状态是什么?

What is the best reference state for building statistical potentials in RNA 3D structure evaluation?

机构信息

Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.

Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan 430073, China.

出版信息

RNA. 2019 Jul;25(7):793-812. doi: 10.1261/rna.069872.118. Epub 2019 Apr 17.

Abstract

Knowledge-based statistical potentials have been shown to be efficient in protein structure evaluation/prediction, and the core difference between various statistical potentials is attributed to the choice of reference states. However, for RNA 3D structure evaluation, a comprehensive examination on reference states is still lacking. In this work, we built six statistical potentials based on six reference states widely used in protein structure evaluation, including averaging, quasi-chemical approximation, atom-shuffled, finite-ideal-gas, spherical-noninteracting, and random-walk-chain reference states, and we examined the six reference states against three RNA test sets including six subsets. Our extensive examinations show that, overall, for identifying native structures and ranking decoy structures, the finite-ideal-gas and random-walk-chain reference states are slightly superior to others, while for identifying near-native structures, there is only a slight difference between these reference states. Our further analyses show that the performance of a statistical potential is apparently dependent on the quality of the training set. Furthermore, we found that the performance of a statistical potential is closely related to the origin of test sets, and for the three realistic test subsets, the six statistical potentials have overall unsatisfactory performance. This work presents a comprehensive examination on the existing reference states and statistical potentials for RNA 3D structure evaluation.

摘要

基于知识的统计势能在蛋白质结构评估/预测中表现出色,而各种统计势能的核心区别在于参考状态的选择。然而,对于 RNA 三维结构评估,对参考状态的全面考察仍然缺乏。在这项工作中,我们基于蛋白质结构评估中广泛使用的六种参考状态(包括平均、准化学近似、原子置换、有限理想气体、球形无相互作用和随机行走链参考状态)构建了六种统计势能,并将这六种参考状态与包括六个子集的三个 RNA 测试集进行了比较。我们的广泛考察表明,总体而言,在识别天然结构和对构象进行排序时,有限理想气体和随机行走链参考状态略优于其他状态,而在识别近天然结构时,这些参考状态之间几乎没有差异。我们进一步的分析表明,统计势能的性能明显取决于训练集的质量。此外,我们发现统计势能的性能与测试集的来源密切相关,对于三个现实的测试子集,这六种统计势能的总体性能并不理想。这项工作对 RNA 三维结构评估中的现有参考状态和统计势能进行了全面考察。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验