Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Drive, Southport, QLD, Australia.
Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
Nat Commun. 2021 May 13;12(1):2777. doi: 10.1038/s41467-021-23100-4.
Refining modelled structures to approach experimental accuracy is one of the most challenging problems in molecular biology. Despite many years' efforts, the progress in protein or RNA structure refinement has been slow because the global minimum given by the energy scores is not at the experimentally determined "native" structure. Here, we propose a fully knowledge-based energy function that captures the full orientation dependence of base-base, base-oxygen and oxygen-oxygen interactions with the RNA backbone modelled by rotameric states and internal energies. A total of 4000 quantum-mechanical calculations were performed to reweight base-base statistical potentials for minimizing possible effects of indirect interactions. The resulting BRiQ knowledge-based potential, equipped with a nucleobase-centric sampling algorithm, provides a robust improvement in refining near-native RNA models generated by a wide variety of modelling techniques.
将模型结构精修到接近实验精度是分子生物学中最具挑战性的问题之一。尽管多年来一直在努力,但蛋白质或 RNA 结构精修的进展一直很缓慢,因为能量评分给出的全局最小值并不在实验确定的“天然”结构上。在这里,我们提出了一个完全基于知识的能量函数,它可以捕捉碱基-碱基、碱基-氧和氧-氧相互作用的全方向依赖性,这些相互作用由构象状态和内部能量建模的 RNA 主链表示。总共进行了 4000 次量子力学计算,以重新加权碱基对统计势,以最小化间接相互作用的可能影响。由此产生的 BRiQ 基于知识的势能,配备了一个以核碱基为中心的采样算法,为通过各种建模技术生成的近天然 RNA 模型的精修提供了稳健的改进。