Lieb Elliott H, Rougerie Nicolas, Yngvason Jakob
1Departments of Mathematics and Physics, Princeton University, Princeton, NJ 08544 USA.
2Université Grenoble Alpes & CNRS, LPMMC (UMR 5493), B.P. 166, 38042 Grenoble, France.
J Stat Phys. 2018;172(2):544-554. doi: 10.1007/s10955-018-2082-1. Epub 2018 Jun 21.
We consider general -particle wave functions that have the form of a product of the Laughlin state with filling factor and an analytic function of the variables. This is the most general form of a wave function that can arise through a perturbation of the Laughlin state by external potentials or impurities, while staying in the lowest Landau level and maintaining the strong correlations of the original state. We show that the perturbation can only shift or lower the 1-particle density but nowhere increase it above a maximum value. Consequences of this bound for the response of the Laughlin state to external fields are discussed.
我们考虑一般的粒子波函数,其形式为填充因子为的劳克林态与变量的解析函数的乘积。这是通过外部势或杂质对劳克林态进行微扰而产生的波函数的最一般形式,同时保持在最低朗道能级并维持原态的强关联。我们表明,这种微扰只能使单粒子密度发生移动或降低,而不会在任何地方使其增加到超过最大值。讨论了这一限制对劳克林态对外场响应的影响。