Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA.
Phys Rev Lett. 2012 Feb 10;108(6):066806. doi: 10.1103/PhysRevLett.108.066806. Epub 2012 Feb 9.
I demonstrate that the wave function for a ν=n+ν[over ˜] quantum Hall state with Landau levels 0,1,…,n-1 filled and a filling fraction ν[over ˜] quantum Hall state with 0<ν[over ˜]≤1 in the nth Landau level can be obtained hierarchically from the ν=n state by introducing quasielectrons which are then projected into the (conjugate of the) ν[over ˜] state. In particular, the ν[over ˜]=1 case produces the filled Landau level wave functions hierarchically, thus establishing the hierarchical nature of the integer quantum Hall states. It follows that the composite fermion description of fractional quantum Hall states fits within the hierarchy theory of the fractional quantum Hall effect. I also demonstrate this directly by generating the composite fermion ground-state wave functions via application of the hierarchy construction to fractional quantum Hall states, starting from the ν=1/m Laughlin states.
我证明了,对于填充了 Landau 能级 0、1、…、n-1 的 ν=n+ν[over ˜]量子 Hall 态和填充了 Landau 能级 0<ν[over ˜]≤1 的 ν[over ˜]量子 Hall 态的波函数,可以通过引入准电子并将其投影到(ν[over ˜]态的共轭)中,从 ν=n 态逐级得到。特别是,ν[over ˜]=1 的情况逐级产生填充的 Landau 能级波函数,从而确立了整数量子 Hall 态的分级性质。由此可知,分数量子 Hall 态的复合费米子描述符合分数量子 Hall 效应的分层理论。我还通过从 ν=1/m Laughlin 态开始,应用分层构造来生成分数量子 Hall 态的复合费米子基态波函数,直接证明了这一点。