Lissovoi Andrei, Witt Carsten
1Department of Computer Science, University of Sheffield, Sheffield, UK.
2DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark.
Algorithmica. 2018;80(5):1634-1657. doi: 10.1007/s00453-017-0377-2. Epub 2017 Sep 20.
Island models denote a distributed system of evolutionary algorithms which operate independently, but occasionally share their solutions with each other along the so-called migration topology. We investigate the impact of the migration topology by introducing a simplified island model with behavior similar to islands optimizing the so-called Maze fitness function (Kötzing and Molter in Proceedings of parallel problem solving from nature (PPSN XII), Springer, Berlin, pp 113-122, 2012). Previous work has shown that when a complete migration topology is used, migration must not occur too frequently, nor too soon before the optimum changes, to track the optimum of the Maze function. We show that using a sparse migration topology alleviates these restrictions. More specifically, we prove that there exist choices of model parameters for which using a unidirectional ring of logarithmic diameter as the migration topology allows the model to track the oscillating optimum through Maze-like phases with high probability, while using any graph of diameter less than for some sufficiently small constant results in the island model losing track of the optimum with overwhelming probability. Experimentally, we show that very frequent migration on a ring topology is not an effective diversity mechanism, while a lower migration rate allows the ring topology to track the optimum for a wider range of oscillation patterns. When migration occurs only rarely, we prove that dense migration topologies of small diameter may be advantageous. Combined, our results show that the sparse migration topology is able to track the optimum through a wider range of oscillation patterns, and cope with a wider range of migration frequencies.
岛屿模型表示一种分布式进化算法系统,这些算法独立运行,但偶尔会沿着所谓的迁移拓扑结构相互共享它们的解决方案。我们通过引入一种简化的岛屿模型来研究迁移拓扑结构的影响,该模型的行为类似于优化所谓迷宫适应度函数的岛屿(Kötzing和Molter,发表于《自然并行问题求解会议论文集》(PPSN XII),施普林格出版社,柏林,第113 - 122页,2012年)。先前的工作表明,当使用完全迁移拓扑结构时,迁移不能过于频繁,也不能在最优解变化之前过早发生,以便追踪迷宫函数的最优解。我们表明,使用稀疏迁移拓扑结构可以缓解这些限制。更具体地说,我们证明存在模型参数的选择,对于这些选择,使用对数直径的单向环作为迁移拓扑结构,模型能够以高概率通过类似迷宫的阶段追踪振荡最优解,而使用直径小于某个足够小常数的任何图,岛屿模型极有可能失去对最优解的追踪。通过实验,我们表明在环形拓扑结构上非常频繁的迁移不是一种有效的多样性机制,而较低的迁移率允许环形拓扑结构在更广泛的振荡模式范围内追踪最优解。当迁移很少发生时,我们证明小直径的密集迁移拓扑结构可能是有利的。综合起来,我们的结果表明,稀疏迁移拓扑结构能够在更广泛的振荡模式范围内追踪最优解,并应对更广泛的迁移频率。