Suppr超能文献

基于知识图谱的语义特性进行药物优先级排序。

Drug prioritization using the semantic properties of a knowledge graph.

机构信息

Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.

Department of Medical Informatics, Erasmus MC, University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands.

出版信息

Sci Rep. 2019 Apr 18;9(1):6281. doi: 10.1038/s41598-019-42806-6.

Abstract

Compounds that are candidates for drug repurposing can be ranked by leveraging knowledge available in the biomedical literature and databases. This knowledge, spread across a variety of sources, can be integrated within a knowledge graph, which thereby comprehensively describes known relationships between biomedical concepts, such as drugs, diseases, genes, etc. Our work uses the semantic information between drug and disease concepts as features, which are extracted from an existing knowledge graph that integrates 200 different biological knowledge sources. RepoDB, a standard drug repurposing database which describes drug-disease combinations that were approved or that failed in clinical trials, is used to train a random forest classifier. The 10-times repeated 10-fold cross-validation performance of the classifier achieves a mean area under the receiver operating characteristic curve (AUC) of 92.2%. We apply the classifier to prioritize 21 preclinical drug repurposing candidates that have been suggested for Autosomal Dominant Polycystic Kidney Disease (ADPKD). Mozavaptan, a vasopressin V2 receptor antagonist is predicted to be the drug most likely to be approved after a clinical trial, and belongs to the same drug class as tolvaptan, the only treatment for ADPKD that is currently approved. We conclude that semantic properties of concepts in a knowledge graph can be exploited to prioritize drug repurposing candidates for testing in clinical trials.

摘要

可通过利用生物医学文献和数据库中可用的知识对候选药物再利用化合物进行排名。这些知识分散在各种来源中,可以整合到一个知识图中,该图全面描述了药物、疾病、基因等生物医学概念之间的已知关系。我们的工作使用药物和疾病概念之间的语义信息作为特征,这些特征是从一个整合了 200 个不同生物知识源的现有知识图中提取的。RepoDB 是一个标准的药物再利用数据库,用于描述已在临床试验中获得批准或失败的药物-疾病组合,我们使用它来训练随机森林分类器。该分类器在 10 次重复 10 折交叉验证中的性能达到了 92.2%的平均接收者操作特征曲线下面积 (AUC)。我们将该分类器应用于优先考虑 21 种已被提议用于常染色体显性多囊肾病 (ADPKD) 的临床前药物再利用候选药物。我们预测,加压素 V2 受体拮抗剂 Mozavaptan 将是在临床试验后最有可能获得批准的药物,并且属于与 Tolvaptan 相同的药物类别,后者是目前唯一获得批准的 ADPKD 治疗方法。我们得出结论,知识图中概念的语义属性可用于优先考虑药物再利用候选药物进行临床试验测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777e/6472420/93c35df07e1f/41598_2019_42806_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验